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Project Goals and Objectives

2

• The first objective is to better 
understand the limitations 
associated with two-phase dense 
fluid expansion from 
aerodynamic, thermodynamic, 
and mechanical perspectives

• The second objective is to apply 
this knowledge to construct a 
prototype device to further 
explore the basic properties of 
two-phase dense fluid expansion
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Presentation Outline
• Background

• Methods

• Results

• Future Testing
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Background
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Background
• Cryogenic air separation is the state of the art technology used to supply 

the vast amounts of oxygen required for coal gasification

• Power needed to drive the main air compressor (MAC) in a typical air 
separation unit (ASU) represents approximately 70-90% of ongoing 
operating cost for the entire ASU

• Usage of a dense fluid expander (DFE) within an ASU allows for more 
efficient plant operation, and therefore less power is required to produce 
an equivalent amount of oxygen product

• Typically 1HP refrigeration power created by the DFE equates to 5-6HP of 
electrical power savings
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Background
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Expander Gearbox Generator Accessory 
System

State-of-the-art, single-phase Dense Fluid Expander (DFE)

Air Products Model ETAGG-3DF

2017 © Air Products and Chemicals, Inc.  
All Rights Reserved



• State of the art cryogenic dense fluid expanders used in air separation are 
typically limited to single-phase flow (liquid in, liquid out)

• A single-phase DFE design with only liquid in the discharge typically 
experiences very little volume change upon expansion

• A two-phase DFE may experience volume increases of up to 10 times upon 
expansion

• The large volume difference between vapor and liquid poses challenges to 
designing equipment as it relates to machine efficiency, durability, erosion, 
stable operation, and other performance criteria
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Single-Phase DFE Two-Phase DFE

Background
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Opportunities for Additional DFEs in 
ASU Applications

9

O2

Air

N2

HPCOL

LPCOL

 

80 bar

85 bar

5.5 bar

30 bar

1.2 bar

5.5 bar

1.2 bar

Liq

2-phs

2-phs

2-phs

Vap

Vap

Vap

Liq

Liq

Vap

Vap

Liq

LIN Reflux

JT Air

Crude LOX

Note: 
Argon splits between O2 and 
N2, depending on the cycle

Pumped-LOX Cycle

2017 © Air Products and Chemicals, Inc.  
All Rights Reserved



• Developing a successful two-phase dense fluid expander for cryogenic air 
separation will open doors for additional DFE applications and overall ASU 
plant efficiency improvement:
1. Run traditional DFE applications two phase leading to more efficient plant 

operation.  Current DFE’s are back-pressured to keep discharge flow single phase.
- Savings equal to ~0.3% of MAC electrical power = 130HP*

2. Replacement of letdown valves with DFE’s (3-6 valves per typical ASU)
- Savings equal to ~1% of MAC electrical power = 450HP*

3. Waste heat recovery cycles requiring two phase DFE’s
- Savings equal to ~5% of MAC electrical power = 2,250HP*
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Methods
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Inlet 
Scrolls

Nozzles

Impeller

Expander Stage Layout
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CFD Mesh
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Sector-only
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• Inlet
Total Pressure: 1226 psia
Total Temperature: -275 F

• Outlet
Total Pressure: 70-200 psia

• Rotor
Spinning frequency: 19500 RPM

• Impeller-Nozzle Interface : Mixing plane

• Energy Equation : Total Energy

Flow Conditions
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Three different ways to model: 

1. Incompressible flow models

2. Real gas cubic equation of state            
(Redlich Kwong, Peng Robinson, etc.)

3. Variable density and specific heat from 
in house thermodynamic models

Modeling Techniques
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• Homogenous multi-phase model
- Both vapor and liquid phase velocity 

fields are same

• Interface mass transfer - Rayleigh 
Plesset Model
- Saturation pressure expression as 

function of temperature

Cavitation Model Used
Rayleigh Plesset Model
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Results
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Total Inlet pressure psi 1226 1226 1226 1226 1226 1226
Total Inlet Temperature R 184.67 184.67 184.67 184.67 184.67 184.67
Total Inlet Temperature F -275 -275 -275 -275 -275 -275
Vapor Fraction 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Discharge Static Pressure psi 200 150 125 100 85 70
Total Discharge Temperature R 180.04 179.78 179.74 179.72 178.74 178.3212
Total Discharge Temperature F -279.63 -279.89 -279.93 -279.95 -280.93 -281.349
Discharge Vapor fraction 0.00% 0.00% 0.79% 1.32% 4.13% 5.57%
Isentropic Discharge Temperature F -280.5 -280.8 -280.9 -281 -282.8 -287.4
Isentropic Efficiency 84.18% 84.31% 83.56% 82.50% 76.03% 51.20%
Isentropic Enthalpy Drop Btu/lb 3.92 4.11 4.21 4.3 4.36 4.47
Actual Enthlapy Drop Btu/lb 3.30 3.47 3.52 3.55 3.31 2.29
Massflow lb-mole/hr 11414.3 11414.3 11414.3 11414.3 11414.3 11414.3
Power HP 428.6121 450.0728 456.9167 460.7682 430.5332 297.2607

Two-Phase Flow with Cavitation
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Results
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• An axial impulse design has been selected for crude liquid oxygen (LOX) 
letdown conditions.

• Axial impulse designs have been applied in industry to various two-phase 
designs (steam, refrigerants), but no published information found for ASU-
related cryogens.

• An expander sizing tool has been developed.   The program has been 
tested and correlates well with published data on other two-phase designs.

• This program will be used as the basis for sizing and design of the axial 
impulse stage along with other established criteria for axial impulse 
turbine designs.
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Axial Impulse Dense Fluid Expander
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C RYOM ACHINERY  F ORM

Reference CMD-XXXX

AUTHORIZED BY: 
SUBJECT MATTER EXPERT:   Robert Benton

By: R Benton Date: 20-Sep-16
Generator speed RPM 3650 P1 psia 107.5

T1 deg F -281 -317.74
P1 107.5 psia Nozzle speed/blade speed 2 s1 22.44034
T1 -281 F P2 psia 35
d1 43.24995328 lb/ft^3 Impeller Mean Line Diameter inches 7 T2 ( (a)diabaticdeg F -305.646
h1 -165.456397 btu/lb U FPS 111.4829
Pnoz 35 psia flow ft^3/s 1.881079 Mw -- 28.014 Inlet sizing
Tnoz F nozzle # 8 Flow #mole/hr 1000 647.7232 ft^3/hr
dnoz 4.136810791 lb/ft^3 α1 degrees 20 Density1 lbm/ft^3 43.24995 2 pipe dia (in)
hnoz -165.456397 btu/lb DensityNoz lbm/ft^3 4.136811 8.247068 velocity (fps
Prot 35 psia required nozzle velocity = 237.275 Density2 lbm/ft^3 0.645298
Trot F Vai FPS 237.275 enthalpy1 btu/lbmol -4635.1 Discharge sizing
drot 0.645298355 lbm/ft^3 Nozzle size for this velocity enthalpy2s btu/lbmol -4669.2 43412.48 ft^3/hr
hrot -166.673883 btu/lb area ft^2 0.001 4 pipe dia (in)
dh 1.217485722 btu/lb area in^2 0.143 138.1862 velocity (fps
mdot 7.781666667 lbm/s diameter in 0.426 Fluid %
dProt 0 psid nozzle ellipse length in 1.246 N2 100
speed 3650 RPM ellipse circumference in 9.970 O2 0
#noz 8 actual circumference in 21.991 OK AR 0
α1 20 degrees
β1 38 degrees 36.05238873 ideal inlet blade angle
Vai 237.3 ft/s
Vri 137.9 ft/s ns 107.5681281
Vre 128.2 ft/s ds 1.529857182
Fbld 50.7 lbf
Pbld 5655.3 ft-lbf/s power 5731.45 ft-lbf/s
HPbld 10.3 Hp 10.42 Hp
HPs 12.5 Hp
Drot 7 inch
EFFnoz 0.9585
BladeLoss 0.93
BladeEff 0.792
Vexit 1.123981051 lbm/s Cp_vapor 0.0000 Cv_vapor 0.0000 Cp_vapor 0.2956 Cv_vapor 0.1950
Lexit 6.657685616 lbm/s Cp_liquid_1 0.5488 Cv_liquid 0.1784 Cp_liquid_1 0.4962 Cv_liquid 0.1686
TOTexit 7.781666667 lbm/s
Thrust 0.53 lbf gamma 3.07550989 gamma 2.710036567

Inlet Discharge

Axial Impulse Turbine Sizing
CMD-XXXXx
Revision p1
6-Apr-16

Lancaster LIN Study  3600 RPM  DOE 2 Phase DFE Project
Fluid: LIN

Axial Impulse Dense Fluid Expander
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Axial Impulse 101
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Axial impulse design is attractive for various reasons:

- High tolerance to two-phase mixtures both at inlet and discharge
- Slower rotor speeds – improved reliability, lower cost
- Simple and inexpensive to manufacture relative to radial inflow designs
- Low-cost installation (no lubrication system, limited monitoring/controls)
- Significant turndown achievable with impulse design through partial 

admission
- Ability to use off-the-shelf induction motor as basis for the unit for our 

application
- Potential stepping stone for multistage and axial reaction turbine stages for 

other applications
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Axial Impulse Dense Fluid Expander
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• Expected to have limited applications due to a small “sweet spot” for 
direct drive devices (based on Ns and Ds)

It may be possible to overcome this using high-speed generator 
technology and variable-speed inverters for power recovery, or dissipate 
electricity in its generated form and simply use as a load/brake.

• Sharp-peaked efficiency curve associated with axial impulse design means 
efficient turndown only through step changes in partial admission (must 
keep nozzle exit velocities proper to maintain relative fluid and impeller 
velocities).
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Axial Impulse Dense Fluid Expander

2017 © Air Products and Chemicals, Inc.  
All Rights Reserved



Application Machinery Device Selected

Waste Heat Recovery from Main 
Air Compressor Intercooler Centrifugal Expander

Crude Liquid Oxygen Letdown Axial Impulse Turbine

Traditional Dense Fluid Expander 
in Two-Phase Operation Centrifugal Expander
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Future Testing
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• Perform full-scale testing on an existing centrifugal DFE asset 
located in the US (LaSalle, IL)

• Upgrade instrumentation at site to able to accurately quantify 
performance of unit
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Actual unit to be tested was recently at CMD for refurbishment

Centrifugal DFE Testing
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Three stages of testing planned:

Stage 1 - Test the existing unit as it is currently built by moving the process 
into two-phase flow

Stage 2 – Test the unit with newly designed impeller, shroud, and nozzles 
specifically for two-phase flow using newly developed CFD model

Stage 3 – Test unit with a more significantly modified aerodynamic stage 
including new larger OD impeller, shroud, and new nozzle geometry using 
newly developed CFD model
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Centrifugal DFE Testing
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• Prototype Layout Completed
- Major components detailed and budgetary 

quotes received
- Basic mechanical analysis performed

• Final aero sizing/design required
- Finalize detailed components
- Final mechanical analysis 

• Fabrication
- Release of components for manufacturing
- Assembly of unit
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Axial Impulse Dense Fluid Expander
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Axial Impulse Dense Fluid Expander
Cryo Test Diagram
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