Low Cost Air Separation Process for Gasification Applications

Gökhan Alptekin, PhD TDA Research, Inc. Wheat Ridge, CO galptekin@tda.com

2017 Gasification Systems Project Review

DE-FE0026142 October 1, 2015 – March 31, 2018

March 20, 2017

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Goals and Objective

- The project objective is to demonstrate techno-economic viability of a new air separation technology that can be integrated into the coal gasification processes
- A high temperature chemical absorbent selective for O₂ removal is the key for the process
 - Early proof-of-concept demonstrations in an SBIR Phase II project and NETL project (DE-FE-0024060) proved high oxygen uptake and stable performance
- Project Tasks
 - Sorbent production scale-up
 - Bench-top demonstration of life (minimum 12,500 cycles)
 - Design of a fully-equipped prototype unit to fully demonstrate the concept at the bench-scale (1 kg/hr O₂ production rate)
 - Concept demonstration
 - Process design & cost analysis by Aspen Plus[™] simulations
 - IGCC power generation and CTL

Project Partners

Project Duration

- Start Date = October 1, 2015
- End Date = March 31, 2018

Budget

- Project Cost = \$1,600,000
- DOE Share = \$1,280,000
- TDA and its partners = \$320,000

Presentation Outline

- Background
- TDA's Approach
- System Design
- Bench-Scale Results
- Modeling Results
- Prototype Unit Design
- Techno-economic Analysis
- Future Plans

Background

- Oxygen-blown gasifiers provide smaller size and higher efficiency
 - Substantially lower NO_x generation in IGCCs
 - Improved gas purity with the removal of N_2 in CTL processes
- ASU is one of the largest cost items in a gasification plant (consumes over 5% of plant power and constitutes ~15% of plant cost)
- Cryogenic air separation is the choice of technology at large-scale
 - 600 MW IGCC plant requires ~170 ton O₂/day
- Cryo-separation is highly energy intensive due to the thermal inefficiencies inherent in the low operating temperatures

TDA's Approach

TDA's process uses a unique sorbent material to carry out an oxidation-reduction (redox) process

$$\mathbf{A_xB_yO_z} \textbf{+} \mathbf{nO_{2(g)}} \leftrightarrow \mathbf{A_xB_yO_{z+2n}}$$

- Unlike conventional chemical looping combustion sorbents that also work via a similar redox cycle, the oxygen in our sorbent is released by changing process conditions
- The oxidized metal oxide phase is "meta-stable" and autoreduces by changing T, P, oxygen partial pressure
 - The auto-reduction releases oxygen, which can be recovered as a pure product
 - No use of reducing gases (e.g., CH₄, H₂, CO, syngas) which will consume oxygen

Separation Process

- Sorbent removes the oxygen from the high pressure air
 - 90-95% of the oxygen is selectively removed
 - The vitiated high pressure air (that is mostly N₂) is utilized in a gas turbine after boosting the pressure
- Regeneration is carried out at low pressure close to ambient pressure using a warm sweep gas (superheated steam) <u>ideally</u> under isothermal conditions
 - The combined pressure swing and concentration swing (i.e., the partial pressure difference) is used to drive O₂ from the sorbent
- Temperature swing assisted Pressure swing and Vacuum swing are feasible but not economical

7

System Design

Absorption Process

Regeneration Process

Cycle Sequence

Integrated with IGCC Power Plant

Integration to Oxy-Combustion

Sorbent Optimization

- Oxygen release was documented over a wide range of temperatures
 - Early work (DE-FE0024060) focused on improving activity at lower temperatures

Impact of Pressure

GHSV = 500 h⁻¹, T = 750, 800°C, P_{abs} = 12-253 psig, P_{des} = 12 psig 10% · 9% -8% . Dxygen Capacity (wt%) 7% 6% 5 5% 4% 3% 750°C 2% 800°C 1% -0% · 0 50 100 150 200 250 300 350 Adsorption Pressure (psia)

Capacity increases at higher adsorption pressure

Impact of Cycle Time

GHSV = 500 h⁻¹, T = 800°C, P_{abs} = 150 psig, P_{des} = 12 psig

 Shorter cycles provided the best sorbent utilization or hourly working capacity

Sorbent Working Capacity

GHSV = 500 h⁻¹, T = 800°C, P_{abs} = 300 or 150 psig, P_{des} = 12 psig

Adcorption	Sorbent		_	
pressure [psig]	Per cycle	Per hour	Cycles	
	[kg O2/kg	[kg O2/kg	completed	
	sorbent/cycle]	sorbent/hr]		
300	2.54%	0.157	1000	
100	0.52%	0.052	500	

Higher pressures in the IGCC condition provides three times higher working capacity

Multiple Cycle Tests

 Sorbent showed a stable cyclic capacity of over 2.5% wt. O₂ at 750°C

Project Structure - DE-FE0026142

October 1, 2015 – March 31, 2018

- Task 1. Project Management and Planning
- Task 2. Sorbent Production Scale-up
- Task 3. Sorbent Life Test (12,500 cycles)
- Task 4. Adsorption, CFD Modeling and Reactor Housing Design
- Task 5. Optimization of Cycle Sequence
- Task 6. Design of Prototype Unit (1 kg/hr O₂ Output)
- Task 7. Fabrication of the Prototype
- Task 8. Proof-of-Concept Demonstrations with the Prototype Unit
- Task 9. Techno-economic Analysis

Project Schedule

Sorbent Production Scale-up

- Early work batch size 0.1 to 0.5 kg
- Current batch size 1 to 10 kg
- Target batch size (End of Task 2) 100 kg
 - The scale-up work is carried out at TDA's pilot production facility Golden, CO using high throughput production equipment

We will develop a Manufacturing and Quality Assurance Plans to ensure consistency in the sorbent material within each batch and minimize any batch-to-batch variations

Absorption Equilibrium Model

- The sorbent achieves very high equilibrium capacity above 6% wt. at a low temperature of 650°C
- In these tests we ensured complete regenerations between each data point to obtain the maximum possible capacity
- An predictive model is being built by University of Alberta 20

Breakthrough Simulations

- Equilibrium isotherms were modeled using a simple Langmuir Isotherm
- Isotherm model parameters were used to simulate the breakthrough curves
- These simple models were able to replicate the heat effects and the average breakthrough time
- These models are now being refined for use in cycle optimization

CFD Modeling

- To assist with the reactor design, GTI is carrying out CFD modeling work
 - Model calibrations based on the bench-scale results are completed
 - The lab measurements and model predictions indicate modest temperature increase due to the reaction exotherm (the temperature rise between 60-110°C is predicted based on operating conditions)

The model results is used in the design of the 1 kg/hr prototype

It will now be used for full-scale system

22

Working Capacity, Low Absorption P

Prototype Unit – P&ID

We designed a 4-bed high temperature PSA system 24

Reactor Design

Vessel Sizing fo	r 1 kg/ł	ır O ₂
/essel Sizing fo	r 1 kg/h 1	nr O ₂
O ₂ Product Rate	16.7	g/min
Sorbent Capacity	1.57%	wt. O2
Sorbent density	0.793	kg/L
Cycle time	30	min
Sorbent needed	31.8	kg
Total Sorbent Volume	40.2	L
Sorbent Volume (1 Bed)	10	

- **6" diameter 36" height vessels to house 12L (0.4 CF) sorbent**
 - Incoloy HT is chosen for the material with a design temperature of 850°C and pressure of 300 psig

SECTION A-A

Prototype Unit Layout

Isometric

Cut-view

26

Techno-economic Analysis (TEA)

- TDA in collaboration with University of California, Irvine is carrying out a high fidelity process design and economic analysis
- TDA's ASU unit provides significant improvement in overall plant performance: an increase in the net plant efficiency from 32% to 33.74% for an IGCCC power plant equipped with a cold gas cleanup system (compared to a cryogenic ASU)
- The efficiency also improvement for the IGCC power plant with warm gas cleanup system
 - □ 35.09% vs 34.46%
- The 1st year Cost of Electricity (COE) and the Cost of CO₂ Capture are also lower for the TDA ASU that for the cryogenic ASU
- Cost of CO₂ capture goes from \$47 to \$43 per tonne for cold gas capture and from \$41 to \$39 per tonne for warm gas capture
- The efficiency benefits are also demonstrated for a supercritical pulverized coal oxy-combustion power plant
 - Net plant efficiency increased from 29.3% (for a cryogenic ASU) to 30.7% (TDA ASU)

Process Techno-economic Analysis

Case		Case 1A		Case 1B	Case 2
	IGCC – Cold Gas		IGCC – Warm Gas		SCPC –
	Cleanup -Selexol [™]		Cleanup –TDA		Oxy-
Type Plant	GE Gasifier		Sorbent - GE gasifier		combustion
		TDA		TDA	TDA
ASU Technology	Cryogenic	Sorbent	Cryogenic	Sorbent	Sorbent
CO ₂ Capture, %	90	90	90	90	99.5
Gross Power Generated, kWe	727,370	736,376	674,331	735,358	817,314
Gas Turbine Power	464,000	464,000	417,554	464,000	-
Steam Turbine Power	257,403	263,488	246,746	260,809	731,607
Syngas/Air Expander	5,968	8,888	10,031	10,549	85,707
Auxiliary Load, kWe	192,927	170,247	120,661	142,079	267,314
Net Power, kWe	534,443	566,129	553,671	593,279	550,000
Net Plant Efficiency, % HHV	32.00	33.74	34.46	35.09	30.7
Coal Feed Rate, kg/h	221,584	222,570	213,013	224,161	224,159
Raw Water Usage, GPM/MWe	10.92	9.35	10.55	10.51	13.92
Total Plant Cost, \$/kWe	3,359	3,232	3,212	3,175	3,849
COE without CO ₂ TS&M, \$/MWh	133	128	126	124	140
COE with CO ₂ TS&M, \$MWH	142	136	134	132	151
Cost of CO ₂ Capture, \$/tonne	47	43	41	39	-

Future Work

- TDA will complete the fabrication and testing of the 1 kg/hr prototype unit demonstrating the high temperature air separation process
- The results will allow us to further validate the CFD and absorption cycle models
- The performance results will also be used to revise the process models being developed by UCI
- Revise our estimates for the cost of CO₂ capture for GE and E-Gas gasifier based IGCC power plants and oxy-combustion coal fired power plant

