

Metal 3D Printing of Low-NO_x Fuel Injectors with Integrated Temperature Sensors

Presented by: Philip Morton Applications Manager W.M. Keck Center for 3D Innovation

Motivation

- The purpose of the project is to fabricate low- NO_X fuel injectors for natural gas turbine combustors with electron beam additive manufacturing
- Low NO_X injectors are conventionally manufactured with a multistep machining and welding process
- Additive manufacturing enables the design and fabrication of complex internal cavities and channels for placement of sensors (i.e. Thermocouples)

Problem Statement

- Electron beam additive manufacturing sinters powder to improve the fabrication process
- Sintered powder obstructs fluid flow channels and sensors placement cavities
- A method to remove sintered is required in order to fabricate end use parts

Electron Beam Additive Manufacturing

- Superior control of thermal profile fabricated at elevated temperature
- Design Freedom
- High Temperature capabilities
- Built in a vacuum chamber

- Powder bed fusion process same as electron beam additive manufacturing
- Better surface finish than EBAM
- Fabricated at low temperatures; can require post heat treatment
- Does not sinter powder

Dimensional verification

 A ranking model was used to evaluate the dimensional accuracy of the three EBAM machines, A2X, A2, and S12

Coordinate measurement machine and jig

Arcam A2X

Arcam A2

Arcam S12

Letter	Feature	Factor Tested
А	Square base	
В	Lateral ridges (+)	
С	Lateral ridges (-)	
D	Descending cylinders (-)	
E	Descending cylinders (+)	Dimensional accuracy
F	Staircase (-)	
G	Staircase (+)	
н	Cylinders (-)	
I	Cylinders (+)	
J	Ramps	Surface roughness
к	Rectangular prisms	Linear displacement error
L	Tensile bar	Ultimate tensile strength

Dimensional Verification Results

- Features smaller than 2.5 mm tended to deform
- Wall thickness was greater than designed – possibly due to surface roughness

Surface roughness

Surface roughness was measured on two ramp features

Preliminary powder removal evaluation

• Powder removal methods were testing on several wall thicknesses and orifice diameters (1, 2, 4, 6 mm)

19mm cylinder (4mm channel) 25mm cylinder (4mm channel) 35mm cylinder (4mm channel)

45mm cylinder (4mm channel)

Preliminary powder removal **E**SETR evaluation

After applying ultrasonic vibration

25mm Cylinder 47 4G 45 · 44 (gram 43 <u>5</u> 42 ⁸ 41 40 39 38 1 mm hole 2 mm hole 4 mm hole 6 mm hole □Weight Initial □Weight (+2 min) □Weight (+2 min) □Weight (+2 min) □Weight (+2 min) □Weight (+2 min)

⊒Welght Initial □Weight (+2 min) □Weight (+2 min) □Weigh. (+2 min) □Weigh. (+2 min)

□Weight Initial □Weight (+2 min) □Weight (+2 min) □Weight (+2 min) □Weight (+2 min)

45mm Cylinder

Powder Removal Methods

- Powder Recovery System (PRS)
- Vapor Blast
- Ultrasonic
- Ultrasonic & Hammering
- Chemical Etching
- Liquid Nitrogen & Ultrasonic

Powder Recovery System (PRS)

Vapor Blast

Chemical etching

Hammering

Ultrasonic

Liquid Nitrogen

Methodology

• To evaluate powder removal methods, a design of experiments was created

Powder Recovery System (PRS)

- Pressurized air blasts metal powder
- Powder is recovered and reused
- After 6 minutes the part was clean

Part after printing

Ultrasonic

- Ultrasonic vibrations are applied to the part to break up sintered powder
- After 6-8 minutes weight change stagnated

Ultrasonic application wand

Ultrasonic controller

Vapor Blast

- Parts were blasted with a slurry of sand and water
- Vapor blasting was found to be ineffective

Vapor Blast Station

Parts after blasting

Ultrasonic and Hammering

- Testing consists of 1 minute ultrasonic vibration followed by 1 minute of hammering
- Effective after the first application for straight channels
- Effective after 6 minutes in curved channels

1 minute ultrasonic vibration

1 minute rubber mallet

Light was shown through the holes to assess powder removal

Chemical testing

- Two etchants were tested, Kroll's reagent and Kellers etch
- Solutions were applied directly to specimen, no change was observed after 60 seconds
- Specimens were placed in both solutions for 22 hours; no effect

After Kellers etch

After Kroll's reagent

Kroll's Reagent

- 92 mL Distilled water
- 5 mL Nitric acid
- 2 mL Hydrofluoric acid

Kellers Etch

- 190 mL Distilled water
- 5 mL Nitric acid
- 3 mL Hydrocloric acid
- 2 mL Hydrofluoric acid

- Parts were placed in liquid nitrogen for 30 seconds and followed by 2 minutes ultrasonic vibration
- All the holes were cleared after the first application

Parts dipped in liquid nitrogen

Holes after liquid nitrogen and ultrasonic vibration

Sample Part: Fuel Injector

- A sCO₂ injector design was used as a component level test part
- Was not fully cleaned, still in progress

PRS applied to the large orifices, 0.218 lbs powder removed

LN₂ and ultrasonic, 0.258 lbs powder removed

Conclusion

- The evaluation of powder removal methods has identified the most effective
- Design complexity and wall thickness can inhibit these methods

Testing Method	Results
Powder recovery system	Effective – external orifices
Ultrasonic	Effective
Vapor Blast	Ineffective
Ultrasonic & Hammering	Effective
Chemical testing	Ineffective
Nitrogen & Ultrasonic	Effective - Best

Future work

- Continue removing powder from the sCO₂ injector
- Fabricate Low-NO_X injector and apply effective powder removal methods

Acknowledgements

- Funding support by the U.S. Department of Energy (DOE), award No. DE-FE0026330
- Program Manager: Maria Reidpath

Wicker

Thank You Questions?