Large Bench-scale Development of a Non-Aqueous Solvent CO$_2$ Capture Process for Coal-fired Power Plants

S. James Zhou, Jak Tanthana, Paul Mobley, Aravind Rabindran, Mustapha Soukri, Vijay Gupta, Thomas Gohndrone, Markus Lesemann, and Marty Lail

DE-FE0026466
DOE Program Manager: Steve Mascaro

2017 NETL CO$_2$ Capture Technology Meeting

August 22, 2017
Energy Technologies at RTI International

Delivering the promise of science for global good

$885 M
FY2016 Revenue

3,064 Projects
1,102 Clients

5,032 Staff Members

90 Languages
250 Degree Fields
105 Nationalities

12 U.S. Offices
Research Triangle Park, NC
Ann Arbor, MI
Atlanta, GA
Berkeley, CA
Chicago, IL
Fort Collins, CO
Portland, OR
Rockville, MD
San Francisco, CA
Seattle, WA
Waltham, MA
Washington, DC

10 International Offices
Abu Dhabi
Barcelona
Beijing
Jakarta
Ljungskile
Manchester
Nairobi
New Delhi
San Salvador
Toronto

ENERGY TECHNOLOGIES
Developing advanced process technologies for energy applications by partnering with industry leaders

Biomass Conversion
Industial Water Treatment

Carbon Capture & Utilization, Gas Separations
Advanced Materials for Catalysis & Separations

Syngas Processing
Natural Gas

Natural Gas
Presentation Overview

- Project Overview and Objectives
- Project Summary and Budget
- Budget Period 1 Review
 - Milestones and Accomplishments
 - NAS Solvent
 - Process Engineering and Design
 - Bench-Scale Testing
- Budget Period 2 Update
 - Overview, Tasks, and Objectives
 - BP2 Progress
- Next Steps / Technology Development Pathway
Total Funding: $3,579,081

Federal: $2,705,013
Cost Share: $874,068

Objective: Continue the advancement of the NAS CO₂ Capture Process
- Increase solvent performance
- Design and build unique process modifications for Tiller
- Perform pilot testing of NAS on coal-derived flue gas
- Techno-economic and EHS evaluation

Timeframe:

<table>
<thead>
<tr>
<th>BP</th>
<th>Timeframe</th>
<th>Months</th>
<th>Proposed Budget</th>
<th>Actual Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10/01/15 – 12/31/2016</td>
<td>15 months</td>
<td>$1,670,000</td>
<td>$1,532,330</td>
</tr>
<tr>
<td>2</td>
<td>01/01/17 – 06/30/2018</td>
<td>18 months</td>
<td>$1,909,081</td>
<td>$2,046,751</td>
</tr>
</tbody>
</table>
BP1 Scope and Objectives

- NAS Process testing at Tiller using propane+coal-derived flue gas
- Reduce the parasitic energy penalty to < 2.0 GJ\(_t\)/Tonne of CO\(_2\) captured

Other goals and objectives:

- Conduct baseline testing of MEA and
- Conduct NAS solvent degradation and material compatibility
- Design Regenerator and Absorber wash section,
- Improve the physical properties of NAS
- Improved NAS formulations and plan for scaled-up
<table>
<thead>
<tr>
<th>Milestone</th>
<th>Description</th>
<th>Completion</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Kick-off Meeting</td>
<td>12/31/15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone Achieved. Kick-off meeting held at DOE/NETL site on 12/17/2015.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Updated project management plan</td>
<td>5/5/16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone Achieved. Revision 1 of PMP was approved by DOE/NETL on 6/27/2016.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Completion of 250 hours baseline testing at SINTEF Tiller plant</td>
<td>3/20/17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone Achieved. Performed MEA baseline testing at SINTEF and verified 3.6 GJ/Ton-CO₂ reboiler heat duty consistent with values reported in literature. Completed 405 hours of NAS baseline testing,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Engineering design package for Regenerator delivered to SINTEF.</td>
<td>10/31/16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone Achieved. A final design and engineering package has been delivered and included updated P&IDs, stream tables, and bill of materials for modification recommendations to SINTEF for their CO₂ capture unit at the Tiller plant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Experimental data from formulation improvement confirming that the NAS solvents absorb less than 5wt% water.</td>
<td>12/31/16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone Achieved. Some NAS formulations are able to achieve the < 5 wt% target, however, the optimal formulations have a preferred water absorption target between 5 to 10 wt%.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bench-Scale Testing of Solvent Formulations

Absorber
3” Sch. 10 SS316 (8.5 m height)
Mellapak 350X
Temp: 30-55° C
Pressure: Up to 200 kPa
Gas Vel: 0.33-1.5 m/s
L: 15-75 kg/h

Regenerator
3” Sch. 10 SS316 (7.1 m height)
Mellapak 350X
Temp :Up to 150° C
Pressure: Up to 1MPa

Simulated Flue Gas Properties
- **FG Flow Rate**: 100 to 485 SLPM
- **CO₂ Feed Rate**: 1.8 to 8.6 kg/h
- **Feed Temp.**: 30 to 50°C
- **Target Comp**: CO₂: 13.3%; H₂O: 6.1%; O₂: 2.35%; N₂: bal.
- **CO₂ Content**: up to 20 %vol
- **Water Content**: ~0 to 12.3%vol

Baseline testing with aqueous MEA

~185 kg CO₂/day

75 Liter Solvent
Bench Scale Test Results

RTI non-aqueous solvents showing substantially reduced reboiler heat duties
Experimental Reboiler Duty Data

Conditions for Experimental Data
- Absorber: 37-40°C
- Regenerator: 87-98°C
- Pressure: 2.5 bar
- Interstage Heater Regeneration

Comparison of Reboiler Duty of NASs

Reboiler Heat Duty (GJ/T·CO₂)

L/G (mass/mass)
Specific Reboiler Duty Comparison

<table>
<thead>
<tr>
<th></th>
<th>SRD (GJ/T-CO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA</td>
<td>3.5</td>
</tr>
<tr>
<td>KS-1</td>
<td>2.5</td>
</tr>
<tr>
<td>Shell Cansolv DC-103</td>
<td>2.0</td>
</tr>
<tr>
<td>RTI NAS-5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

(Petra Nova Carbon Capture Project) (SaskPower)

36 – 42% Reduction
Baseline Testing of NAS at Tiller Pilot Plant

- Compare MEA and NAS in conventional system
- Water balance
- Confirm reboiler heat duty
- Emission measurement

- MEA baseline testing completed at Tiller plant
- NAS baseline testing completed
 - 350 hours of testing with propane + 50 hour with coal flue gas
 - Coal flue gas testing cut short due to particulates clogging filters and sample lines
 - Confirmed the reduction in reboiler duty
Budget Period 2 Update
BP2 Scope and Objectives

- Procurement, construction, integration, and shakedown of NAS-specific components in SINTEF’s Tiller plant,

- Execution of systematic NAS solvent testing using coal-derived flue gas at SINTEF’s Tiller plant which incorporates the NAS-specific process modifications,

- Completion of 400 hours cumulative testing on coal-derived flue gas at the Tiller plant, achieving 90% CO$_2$ capture and proper water balancing,

- Completion of a detailed Techno-Economic Analysis (TEA) to confirm that RTI’s NAS-based technology can reduce the cost associated with CO$_2$ capture from coal-fired power plants.
Task 5.0 - Baseline Testing of NAS Using Coal-Fired Flue Gas

Subtask 5.1 – Materials degradation testing - Completed
Impact of the NAS on the materials of construction used in the Tiller plant

Subtask 5.2 – NAS Baseline testing in the Tiller Plant
• Baseline testing of the NAS solvent completed
• Reboiler heat duty 2.7 GJ/T-CO$_2$
NAS Baseline Testing Results at Tiller

<table>
<thead>
<tr>
<th>Tiller</th>
<th>Unit</th>
<th>Run 18</th>
<th>Run 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td>12.01.2017</td>
<td>16.03.2017</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td>06:50-07:50</td>
<td>16:00-17:00</td>
</tr>
<tr>
<td>Solvent</td>
<td></td>
<td>NAS</td>
<td>NAS</td>
</tr>
<tr>
<td>Source</td>
<td></td>
<td>Mimicked Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>Gas inlet ABS</td>
<td>m^3/hr</td>
<td>110.0</td>
<td>110.0</td>
</tr>
<tr>
<td>CO$_2$ inlet ABS</td>
<td>$V%$</td>
<td>14.87</td>
<td>14.42</td>
</tr>
<tr>
<td>CO$_2$ outlet ABS</td>
<td>$V%$</td>
<td>1.832</td>
<td>0.659</td>
</tr>
<tr>
<td>CO$_2$ recovery</td>
<td>$%$</td>
<td>89.3%</td>
<td>96.1%</td>
</tr>
<tr>
<td>Liquid inlet Absorber</td>
<td>Kg/min</td>
<td>18.00</td>
<td>18.00</td>
</tr>
<tr>
<td>L/G ratio</td>
<td>kg/kg</td>
<td>8.5</td>
<td>8.4</td>
</tr>
<tr>
<td>Lean amine (tit)</td>
<td>mol/kg</td>
<td>2.695</td>
<td>2.348</td>
</tr>
<tr>
<td>Lean Loading</td>
<td>mol/mol</td>
<td>0.121</td>
<td>0.074</td>
</tr>
<tr>
<td>Rich Loading</td>
<td>mol/mol</td>
<td>0.273</td>
<td>0.290</td>
</tr>
<tr>
<td>Water Lean</td>
<td>$Wt%$</td>
<td>7.9</td>
<td>6.84</td>
</tr>
<tr>
<td>Temp Liq Reboiler</td>
<td>$^\circ C$</td>
<td>99.3</td>
<td>104.8</td>
</tr>
<tr>
<td>Desorber press top</td>
<td>kPa</td>
<td>100.68</td>
<td>97.08</td>
</tr>
<tr>
<td>Reboiler duty</td>
<td>kW</td>
<td>17.82</td>
<td>17.80</td>
</tr>
<tr>
<td>Preheat rich flow</td>
<td>kW</td>
<td>2.53</td>
<td>2.53</td>
</tr>
<tr>
<td>SRD (w/ heat loss)</td>
<td>GJ/T</td>
<td>3.06</td>
<td>2.80</td>
</tr>
<tr>
<td>Temp Gas outlet DCC</td>
<td>$^\circ C$</td>
<td>24.7</td>
<td>23.7</td>
</tr>
<tr>
<td>Temp Lean amine inlet</td>
<td>$^\circ C$</td>
<td>34.8</td>
<td>34.9</td>
</tr>
<tr>
<td>Temp Intercooling</td>
<td>$^\circ C$</td>
<td>38.1</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Mimicked coal flue gas using propane burner flue gas (runs 18, and 22 respectively)

SRD with account of heat loss amounts to about **2.8 GJ/t**, assuming 1.5kW loss in the hot lines.

In the coming months, several modifications will be made at Tiller to run NAS under optimum conditions

It is expected that the Tiller plant modifications will bring the SRD further down (next slide).
Task 6.0 – Solvent Formulation Improvement

- NAS-5 formulation testing
- Parametric testing of NAS-5
- Water balance testing
- Wash section/emissions testing
- NAS reaction kinetics improvement
- NAS oxidative/thermal degradation improvement
Task 7 - Construction, Integration, and Shakedown of NAS-Specific Components in Tiller Plant

Customized changes for the NAS solvents

Installation of:
- New particulate filter
- Updated coal-burner control software
- Two additional absorber inter-coolers (total of three intercoolers)
- Improved water-wash (additional water wash section)
- Two custom made regenerative "inter-heaters"
- One additional cross-flow heat exchanger (that can work in series, or bypass, with the current).

Improved solvent:
- To run NAS-5, capable of operating with lower L/G ratios.

Plant modification to Tiller is expected to be completed by mid September 2017.
Task 8 - Bench-scale Testing of the NAS CO$_2$ Process in Coal-Fired Flue Gas

- Led by SINTEF in BP2 and completed at the Tiller plant.
- Testing using coal-derived flue gas
- Configuration incorporates the NAS-specific process modifications built in Task 7
- Completion of 400 hours cumulative bench-scale testing on coal-derived flue gas at 90% CO$_2$ capture and water balanced

Subtask 8.1 – Parametric testing campaign at Tiller Plant

- Will determine optimal operating parameters for the NAS solvents
- Process parameters such as absorber temperature, regenerator temperature, L/G ratio, and humidity of the flue gas will be varied
- Optimal parameters will be chosen for the long-term evaluation
- Anticipated to be completed in three months

Subtask 8.2 - Long-term performance testing campaign at Tiller Plant

- SINTEF will lead this sub-task
- Duration of the testing is planned for forty-one days.
Task 9 - Detailed Techno-Economic and EHS Analysis

• Will conduct a technical and economic feasibility study as described in Attachment 2 of DE-FOA0001235.
• Shall follow the analysis documented in the NETL report “Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (Rev 2a, September 2013),” aka Bituminous Baseline Study (BBS). The assessment shall follow Case 12, super-critical pulverized coal (PC) with CO₂ capture.
• RTI will also conduct an EH&S risk assessment as described in Attachment 3 of the FOA
• Evaluation of air, water, and solid wastes, toxicological impact, flammability, and corrosivity.

Subtask 9.1 – Updated process modeling
• Led by RTI
• Rate-based process model will be updated with data from coal-derived flue gas testing
• Model will be used to predict energy penalty for Case 12 using NAS solvents

Subtask 9.2 – Technoeconomic analysis
• Led by RTI
• Energy penalty from 7.1 to be used in the techno-economic analysis to compare the cost of a non-aqueous CO₂ capture to aqueous CO₂ capture

Subtask 9.3 – EH&S evaluation
• Led by RTI
• Conduct EHS assessment of emissions to air, contamination of water, and hazards of solid wastes as well as any toxicological effects that are known regarding NAS formulation components, fire danger, or concerns about the potential of the NAS solvents to corrode materials of construction.
Next Steps: NAS-Specific Components for SINTEF Plant

- Complete incorporation of new design at Tiller plant
- Testing to start beginning of Oct. 2017 with:
 - Optimal components at Tiller Plant for NAS testing
 - Optimized NAS formulation; initial bench tests show reduced L/G with similar heat duty
Acknowledgments

• Financial support provided by DOE NETL under DE-FE0026466

• DOE Project Manager: Steve Mascaro

• RTI cost share and project partner SINTEF