ION Advanced Solvent CO₂ Capture Pilot Project

DE-FE0013303
NETL 2017 CO₂ Capture Technology Conference
August 21, 2017

Erik Meuleman, PhD – Chief Technology Officer, ION Engineering
Outline

• ION Project Overview

• Results from ION Campaign at TCM (12 MWe)

• Further Conclusions
ION Advanced Solvent CO₂ Capture Pilot Project

Project #: DE-FE0013303

- **Project Timeline: Oct 2013 –Dec 2017**
 - Budget Period 1: Design of 1 MWe Pilot
 - Budget Period 2: 0.5 MWe Test Campaign at National Carbon Capture Center (NCCC)
 - Budget Period 3: 12 MWe Test Campaign at Technology Centre Mongstad (TCM)

- **$25.2M Total Project Funding**
 - $16.4M DOE-NETL
 - $ 9.2M ION and Partners (35% cost share)

- **Overall Project Objective**
 - Progress towards DOE’s goal for second generation solvents of 90% capture rate with 95% CO₂ purity at a cost of less than $40/tonne CO₂ captured by 2025
Project Participants & Roles

- Funding
- Technology
- Process Simulation & Design
- 3rd Party Verification
- Economic Analysis
- Utility Partner
- Host Sites
- Solvent Lifetime Studies

INTEF

Host Sites

Utility Partner

3rd Party Verification

Economic Analysis

Process Simulation & Design

Technology

Funding

Project Participants & Roles

INTEF
Budget Period 3 – Task Overview
October 1, 2015 – December 31, 2017

<table>
<thead>
<tr>
<th>Task #</th>
<th>Task Description</th>
<th>Key Objectives</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>• Coordinate and plan project activities</td>
<td>• Regular meetings with project team, TCM, and DOE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maintain Budget, Schedule, Task Reviews, and Costs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• On-Boarding of Personnel</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TCM Host Site Preparation</td>
<td>• Modifications necessary to TCM</td>
<td>• Completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ION Solvent Procurement & Delivery</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TCM Operations Preparation & Shakedown</td>
<td>• Develop Procedures for Operations</td>
<td>• Completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Test Plan development and updates throughout campaign</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pilot System Commissioning & Shakedown Testing</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TCM Solvent Testing</td>
<td>• Solvent testing at TCM</td>
<td>• Completed</td>
</tr>
<tr>
<td>14</td>
<td>TCM Data Acquisition, Storage & Analysis</td>
<td>• Installation of Data Acquisition Systems</td>
<td>• In Progress – analyzing data from TCM and process model validation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data Acquisition & Analysis</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TCM Final Systems Analysis</td>
<td>• Final Report to DOE</td>
<td>• TEA & Final Report are on-going</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2017 Techno-Economic Analysis</td>
<td></td>
</tr>
</tbody>
</table>
ION Engineering CO₂ Capture Slipstream Project Schedule

Budget Period 3 Project Schedule

October 1, 2015 – December 31, 2017

ION Engineering CO₂ Capture Slipstream Project Schedule

Task Description

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TCM Host Site Preparation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TCM Ops Preparation & Shakedown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>TCM Solvent Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TCM Data Acquisition, Storage & Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TCM Final Systems Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ION’S CAMPAIGN AT
CO₂ TECHNOLOGY CENTRE MONGSTAD (TCM)
TCM Amine Capture Plant

- Located in Mongstad, Norway
 - 41 miles (60 km) Northwest of Bergen

- Ownership of TCM
 - Gassnova (75%), Statoil (20%), Shell (2.5%), Sasol (2.5%)

- 12 MWe Slipstream Amine Capture Facility
 - Natural Gas-fired Combined Cycle Flue Gas from Combined Heat & Power Plant (CHP)
 - Residue Fluid Catalytic Cracker (RFCC) Gas available from adjacent refinery
Campaign Overview in Numbers

• **150** test settings capturing over **14,000 tCO₂** in **>2,750 hours**

• **>200** liquid samples

• **>3,000** hours of ION personnel on-site at TCM

• **>135** meetings between TCM and ION

• **>500,000,000** data entries were collected and managed
Technical Objectives

- Determine stable, optimal operation of ION’s solvent at TCM
- Validate ION process simulation model (ProTreat®) at 12 MWe scale
- Determine potential for CAPEX savings
 - Materials, packing height, emission mitigation
- Determine process emission profile
- Determine solvent loss rate
- Test and evaluate MLA analytical technology
Campaign Overview

- Flue Gas Types
 - Combined Heat & Power (CHP): Natural Gas Combined Cycle Flue Gas
 - 4% CO₂
 - CHP + CO₂ Recycle
 - 6 – 13% CO₂
 - Residue Fluid Catalytic Cracker (RFCC): Refinery Flue Gas
 - 12 – 15% CO₂
 - Analogous to coal-fired flue gas

- Solvent Loss
 - Emissions
 - Degradation and Heat Stable Salts

- Corrosion

- Multi-component Liquid Analyzer (MLA)

- EPRI
 Independent Verification Protocol
CHP – Natural Gas

$\text{CO}_2 \ 	ext{Concentration: } \sim 3.5\text{-}4.0\%$

- Solvent Performance Comparison
 - TCM (w/o antifoam) 4.0 MJ/kg*
 - 87.0% Capture @ 3.5% CO$_2$
 - TCM (w/ antifoam) 3.6 MJ/kg*
 - 87.4% Capture @ 3.5% CO$_2$
 - ION (w/o antifoam) 3.37 MJ/kg
 - 90.0% Capture @ 4.1% CO$_2$

- No foaming issues
- Very low emissions

*Source: Gjernes et al., GHGT-13, 2016
• CHP testing a prerequisite for switching to RFCC flue gas

• CO₂ ramping of CO₂ testing performed with 18m of packing

• Series of tests performed after installation of additional cooling capacity at TCM
RFCC Results – Minimum SRD vs L/G and P_{str}

CO$_2$ Concentration: 12.5%

- Capture Efficiency 90%
- Increase of P_{str} lowers SRD_{min}
- SRD is 3.25 MJ/kgCO$_2$
 (1,397 BTU/lbCO$_2$)
RFCC Results – Optimum CO₂ Capture Efficiency

CO₂ Concentration: 12.5%

- Hockey stick plot with aged solvent
- \(\text{SRD} = f \left(\text{SST} \right) \) with constant \(L/G \) and \(P_{\text{str}} \), whilst plotted vs CE
- Using SRD as an indication on best capture efficiency, the low point is 80-85%
EPRI Independent Verification Protocol

• 1 week on-site at the end of the RFCC campaign

• Independent verification of all analytical equipment, process schemes, and calculations

• EPRI currently analyzing data

• List of KPIs
 – CO$_2$ in flue gas
 – L/G
 – Specific Reboiler Duty
 – Specific Cooling Duty
 – Specific Electrical Duty
 – CO$_2$ Capture Efficiency
 – CO$_2$ Product Purity
 – Solvent consumption
 – Emissions
CHP and RFCC Results: HSS

- HSS have developed from NO\textsubscript{x} and SO\textsubscript{x} from the flue gas and through oxidation from solvent

- NO\textsubscript{x} HSS is much higher in RFCC than CHP as expected

- Oxidation seems more prominent in CHP conditions (higher O\textsubscript{2} concentration in flue gas) than RFCC
ProTreat® Process Model Comparison to TCM Data

Parity Plots and Temperature Profile
Multi-component Liquid Analyzer (MLA)

- In-line, near real-time analysis of solvent composition & CO₂ loading

- Key Benefits:
 - Provides instant feedback to process changes including water, CO₂, and solvent concentrations
 - Replaces the need for off-line analysis of solvent composition
 - Further development could produce feedback loop for automatic and dynamic process control

- Poster at DOE/NETL review meeting ’17
Further Conclusions

• ION’s advanced solvent successfully demonstrated utilizing both RFCC and CHP flue gas (containing 3.5% to 14.5% CO₂) capturing 14,000 tCO₂ with more than 98% purity

• In comparison to MEA, ION demonstrated lower emission levels on CHP flue gas

• MEA benchmark for CO₂ capture from RFCC gas is currently carried out by TCM

• OPEX
 – Energy: 3.2 – 3.5 MJ/kgCO₂ capturing 85-92% CO₂
 – ProTreat® process model validated with even further improved performance confirming ION’s 2.5 MJ/kgCO₂
 – Chemical consumption is below MEA benchmark
 – Reclaiming with ‘standard’ equipment at TCM is possible

• CAPEX
 – Column height -50% compared to MEA
 – Corrosion is negligible for stainless steel
ION Technology

• Solvent Based Technology
 – Smaller Columns, HXs and Footprint
• Reduced CAPEX
 – Lower Energy Requirements
 – Less Maintenance
 – Lower emissions
• Reduced OPEX
 – Lower Energy Requirements
 – Less Maintenance
 – Lower emissions
• Lower Parasitic Load
• Scalability
 – Established Engineering Process
• Basis of Performance
 – < 1,090 Btu/lbCO₂ captured (2.5 MJ/kg)
 – Fast kinetics (on par or faster than MEA)
 – Working capacity (higher than MEA)
 – Low heat capacity (much lower than MEA)
 – Low tendency for corrosion (much lower than MEA)
Acknowledgement and Disclaimer

Acknowledgement
This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0013303.

Disclaimer
“This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”