Area of Interest 2, Geomechanics of CO₂ Reservoir Seals DE-FE0023316

Peter Eichhubl¹, Xiaofeng Chen¹, Owen Callahan¹, Jon Major¹ Jon Olson³, Tom Dewers², Pania Newell⁴

¹ Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin ²Sandia National Laboratories, Albuquerque, NM ³UT Center for Petroleum & Geosystems Engineering ⁴University of Utah

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500

National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 1-3, 2017

U.S. Department of Energy

Problem Statement

- Sealing efficiency of CO₂ reservoirs has to exceed 99%.
- Design criteria are needed that establish the long term sealing capacity of CO₂ reservoirs and to model leakage risk.
- Top and fault seal risk assessment well established in oil & gas exploration, but:
- <u>scCO₂ and CO₂ brine potentially interact</u> <u>physically & chemically with top seal</u>.
- Seal risk assessment criteria taking these interactions into account are needed for CO₂ systems.

Permeability structure of conduitbarrier fault zone

Cappa and Rutqvist, 2011, Chester et al., 1993

Normal fault in sandstone-siltstone sequence

Opening-mode & sheared opening-mode fractures control flow properties of conductive fault zones. Slip surfaces control damage zone evolution.³

Fractures in CO₂ caprock Crystal Geyser field analog site

Active on $10^2 - 10^5$ year time scales

Methodology

- Experimental measurement of subcritical fracture propagation in various shale lithologies
 - Double torsion test, unconfined conditions
 Short-rod test, confined conditions (scCO₂)
- Textural and compositional characterization
 - Shale material used for fracture testing
 - Post-mortem analysis of lab test specimens
 - Fractures & CO₂ alteration in natural systems
- Numerical modeling of fracture propagation in top seals
 - Fracture network modeling using JOINTS
 - Upscaled modeling for top seal deformation using Sierra Mechanics

Mode-I fracture testing

Testing protocol

- Three shale types
 - Woodford, Mancos, Marcellus
 - Also sandstones for comparison/integration
- Room dry, CO_{2gas}, DI water
- Varying salinity, NaCl, KCl
- Varying pH
- Room temperature, 65°C
- Some samples coated with hydrophobic agent to limit fluid/rock interaction to fracture tip

Shale sample composition

Fracture trace imaging

Woodford, Mancos: intergranular (clay matrix) Marcellus: intragranular (cleavage)

Fracture surface imaging

Mancos shale

Marcellus shale

Roughness variation, but no plumose structure Grain boundary breakage vs transgranular breakage

Water content

Water enhances subcritical fracturing for clay-rich shales

- Strong reduction of K_{IC} (48%) and SCI (75%) with increasing water content
- K-V curves obey power-law, indicating fracturing in stress-corrosion regime (I)
- Load relaxation technique (lines) matches constant loading rate method (squares)

Salinity

<u>Increase of fluid salinity increases K_{IC} and SCI in clay-rich</u> Woodford and Mancos shales

- Less weakening in KCl brine than in NaCl brine
- Clay swelling

pН

SCI decreases with decreasing pH for carbonate-rich Marcellus shale

- K_{IC} is independent of pH
- SCI effect opposite to that in glass and quartzite
- Calcite dissolution

Temperature

Increase in temperature enhances subcritical

- Left-ward shift for all shales
- Concentration effects less pronounced at elevated T

DI water NaCl, 0.17M

0.3

HCl, pH1.8

0.4

Summary of K-V relations

Uncoated

Time-to-failure analysis

10-3

10-1

Remote stress (MPa)

10

10-5

10-5

Constant stress loading:

$$K = \sigma Y \sqrt{a}$$

$$W = AK^{n} \qquad = \int dt = \int_{a_{0}}^{a_{f}} \frac{da}{V} = \frac{2}{\sigma^{2}Y^{2}} \int_{K_{0}}^{K_{IC}} \frac{K}{V} dK$$

$$\Rightarrow t_f = \frac{2}{(2-n)A\sigma^2 Y^2} \left(K_{IC}^{2-n} - K_0^{2-n} \right)$$

Evans (1972) & Nara et al. (2015)

Assume subcritical crack growth limit @ 10⁻¹⁰ m/s:

- To meet safe storage time>10⁴ years, σ <0.004 MPa for wet, σ <0.01 MPa for dry conditions.
- Under σ=1 MPa, failure occurs at 61 days for wet, 402 days for dry.

JOINTS modeling

- Linear elastic, Boundary element code
- Pseudo-3D, accounts for elastic interaction
 - Opening- and mixed-mode fracture propagation
- Allows simulation of fracture network development as function of
 - Subcritical index (SCI) and $K_{\rm IC}$
 - Elastic material properties
 - Distribution of nucleation sites (seed fractures)

Plan and cross-section realizations

JOINTS plan view

Qualitative differences in fracture network geometry in different chemical environments

• Number of fractures, branching behavior, curvature

Fracture aperture distribution

JOINTS cross sections

Summary

- Chemical environments, rock mineralogy, and temperature influence shale fracture properties.
- Larger wet-dry differences in clay-rich shales (Woodford and Mancos) than in carbonate-rich shale (Marcellus).
 - "Wet" fracture growth rate faster by one-order of magnitude
- Increasing temperature enhances subcritical fracturing.
- Carbonate-rich Marcellus: carbonate dissolution
 - SCI sensitive to acidic pH
 - K_{IC} independent of chemical environment
- Woodford & Mancos: clay-water interaction
 - KIC and SCI sensitive to water content and salinity.
 - Water-weakening enhances subcritical fracturing
- Environmental effects controlled by competition between fracture growth rate and rate of rock degradation by fluid-rock interactions.

Implications for CO₂ seal integrity

- Dry tests potentially applicable to dry scCO₂ systems
 - Dry-out by CO₂ injection expected to strengthen caprock
- Increasing caprock failure risk with increasing temperature
- Clay-rich caprocks:
 - More pronounced dry-out effect
 - Lower risk for seal failure by subcritical fracture growth in scCO₂ system
 - High salinity strengthens caprock
- Carbonate-rich caprocks:
 - More prone to subcritical fracture by pH decrease through dissolution of CO₂ in brine

Accomplishments to Date

- Fracture mechanics testing on caprock lithologies in dry & aqueous environments of varying composition, varying temperature
- Numerical simulations on fracture network evolution by chemically aided fracture growth
- Simulated caprock leakage behavior using continuum models for varying well/ reservoir/caprock geometry

Next steps (in progress)

- Short-rod fracture testing under confinement with scCO₂
- Upscaled seal failure & leakage simulations
 - Integration of continuum & fracture network modeling

Synergy Opportunities

- Fracture mechanics analysis of Cranfield and FutureGen II core material
- Integration with tests of frictional behavior under chemically reactive conditions
- Integration of results with fracture network modeling (phase-field, cohesive end-zone, peridynamics)
- Integration with hydraulic fracture research

Appendix

Benefit to the Program

- **Program goals:** Develop characterization tools, technologies, and/or methodologies that improve the ability to predict geologic storage capacity within ±30 %, improve the utilization of the reservoir by understanding how faults and fractures in a reservoir affect the flow of CO₂, and ensure storage permanence.
 - Area of Interest 2 Fractured Reservoir and Seal Behavior: Develop tools and techniques to increase the accuracy and reduce the costs of assessing subsurface seal containment and the seal/reservoir interface, including the measurement of in-situ rock properties in order to develop a better understanding of seal behavior when CO₂ is injected into a reservoir.
- Project is designed to
 - Provide calibrated and validated numerical predictive tools for long-term prediction of reservoir seal integrity beyond the engineering (injection) time scale.
 - Contribute toward technology ensuring 99% storage permanence in the injection zone for 1000 years.

Project Overview: Goals and Objectives

- Perform laboratory fracture mechanics testing to
 - gain fundamental understanding into fracture processes in chemically reactive systems and to
 - provide input parameters on fracture constitutive behavior, fracture rate and geometry, and deformation and transport processes involved in subcritical chemically assisted fracture growth for relevant top seal lithologies.
- Derive predictive and validated numerical models for fracture growth in chemically reactive environments relevant to CCUS top seal lithologies.
- Validate numerical & laboratory observations against microstructural and textural observations on fractures from natural CO₂ seeps.
- Perform upscaled numerical simulations that are informed by field and lab results toward predictive tools for top seal integrity analysis, top seal mechanical failure, and impact on CO₂ leakage in CCUS applications.

Organization Chart/ Communication Plan

Established Sandia-UT collaboration

- Olson Eichhubl on joint industry projects
- Dewers Newell Eichhubl on joint EFRC

Gantt Chart

		Year 1				Year 2				Year 3			Year 4**		
Task/Subtask	9/1/2014-12/31/2014	1/1/2015-3/31/2015	4/1/2015-6/30/2015	7/1/2015-9/30/2015	10/1/2015-12/31/2015	1/1/2016-3/31/2016	4/1/2016-6/30/2016	7/1/2016-9/30/2016	10/1/2016-12/31/2016	1/1/2017-3/31/2017	4/1/2017-6/30/2017	7/1/2017-8/31/2017	10/1/2017-12/31/2017	1/1/2018-2/31/2018	
1. Project Management and Planning	•	>	•	>	•	>	>	>	>	K	•	р	р	р	
2.1. Short rod fracture toughness tests	*	*	*	*	*	*	*	*	*	*	*	*			
2.2. Double torsion tests	>	>	>	•	•	•	>	>	>	K	K	р	р		
2.3. Fracturing in water-bearing supercritical CO2		•	•	•	•	•	>	•				р	р		
3.1. Field fracture characterization	>	•	>	>	>	•	•	>							
3.2. Textural and compositional fracture imaging				•	•	•	>	•	•	K	K				
4.1. Discrete fracture modeling using Sierra Mechanics	•	•	•	•	~	•	•					р	р	р	
4.2. Fracture network modeling using JOINTS						•	•	•	•	•	•	р	р	р	
4.3. Upscaled modeling using Kayenta					✓	•	•								
5. Model validation and integration											~	р	p	р	

* Short-rod tests (task 2.1) are being performed under task 2.3 under confined conditions.

** No-cost extension pending following discontinuity of funding for Sandia in PY 17.

Bibliography

- Journal, multiple authors:
 - P. Newell, M. J. Martinez, P. Eichhubl, 2016, Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage, Journal of Petroleum Science and Engineering, available at: <u>http://doi:10.1016/j.petrol.2016.07.032</u>
 - Chen, X., Eichhubl, P., Olson, J. E., 2017, Effect of water on critical and subcritical fracture properties of Woodford shale, Journal of Geophysical Research-Solid Earth, v. 122, <u>http://dx.doi.org/10.1002/2016JB013708</u>