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Benefit to the Program 
Addresses: 
Area of Interest 1, Geomechanical Research
…….to determine the constraints of whether seals transected by blind faults will 
fail seismically or aseismically when contacted by increased reservoir 
pressures including CO2 and the implications of this rupture on seal breaching 
and loss of inventory. 
Relevance to FOA (“in italics”)
This project will provide:
“improved understanding of geomechanical processes and impacts critical to 
scCO2 injection operations. 
This [project specifically] includes [and integrates]: theoretical studies, [and] 
laboratory, work to:
(a) evaluate and assess the probability of induced seismicity; 
(b) understand, characterize, and measure potential permeability changes from 
slip along existing faults; and 
(c) understand and assess the geomechanical behavior and effects of 
increased reservoir pressure on fractures, faults, and sealing formations.” 
This will include…….
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Project Overview:  
Goals and Objectives

Examine geophysical and mineralogical controls of caprocks on:
• Fault slip – Stable/unstable or aseismic/seismic
• Permeability evolution – Sense and magnitude
• Potential for seal breaching – Permeability and capillary behavior
Including:
• Nature, form and rates of weakening that condition whether fractures and 

faults fail either seismically or aseismically
• Nature, form and rates of healing that define whether fractures may 

strengthen and then re-fail on multiple successive occasions, and 
• Permeability evolution (enhancement or destruction) that is driven on 

fractures as a consequence of these behaviors
• Feedbacks on healing conditioned both by physical and chemical 

transformations and the redistribution of mineral mass driven by fluid 
transport.   



Technical Status & Methodology
Background
• Felt seismicity

– Stable versus unstable slip
• Mineralogical controls
• Geometric (stiffness) controls

• Seal breaching
– Evolution of permeability and capillarity characteristics

Methodology
• Collect, Synthesize and Characterize Sedimentary Formation Samples (Fitts, Lead)

– Collect Homogeneous and Mineralogically Complex Sedimentary Rocks (Peters)
– Sinter Mineral Mixtures to Create Idealized Analogs of Sedimentary Rocks (Fitts)
– Conduct Baseline Characterization of Natural and Synthetic Caprocks (Fitts)

• Laboratory Experimentation (Elsworth, Lead)
– Evolution of Fault Rheology and Transport Parameters (Elsworth)
– 3D Imaging of fault contact area, fault geometry, and mineralogy & textures (Fitts)

• Modeling for Response and for Caprock Screening (Elsworth, Lead)
– Digital Rock Physics Modeling of Response (Elsworth)
– Caprock Screening Heuristics (Peters, Fitts) 5
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Fault Zones as Seals and Pathways

[Patil et al., 2017; after Vrolijk et al., 2005]

Little Grand Wash Fault, UT

[Huppert and Neufeld, Ann. Rev. Fluid Mechs., 2014]
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Controls on Permeability Structure

[e.g. Faulkner et al., 2010]

[IEAGHG, “Fault Permeability,” 2016; after Faulkner et al., 2010][Yielding et al., 2010]

[Fisher and Knipe, 2001]

Mineralogy

Stress and Mineralogy
Fault Core 

and Damage Zones

Dynamic Processes

Deformation and 
Across Fault 
Permeability Control:
Localized process zone 
(gouge in fault core)

Along-Fault
Permeability Control:
Fault damage zone 
(fractures)
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Induced Seismicity

[Elsworth et al., Science, 2016]
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Seismic – Aseismic Transition
Full Spectrum of Slip Behaviors
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Maximum Event Magnitude – Equivalent Porous Medium
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Maximum Anticipated Moment Magnitude – M or M_dot?
MGross or MNet? Triggered –vs- Induced?
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Maximum Event Magnitude – Penny-Shaped Crack
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Nascent Friction-Stability-Permeability Relationships

Observations
• dk/k0 increases with increased 

brittleness (a-b)<0
• dk/k0 increases with increased frictional 

strength
• Roles of mineralogy and surface 

roughness?



 Seismicity-Permeability Linkages – Natural Samples
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 Role of Roughness - Fabricated Fracture Surfaces

• 3D printed fracture casts with different geometric features

Full amplitude

Full amplitude 
[Anisotropic]

Full amplitude 
[Double wavelength]

Half amplitude 
[Double wavelength]
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Case Dx

Case Dy

Case E

 Net Friction and Permeability Evolution

Full amplitude  
[Anisotropic –y]

Full amplitude  
[Anisotropic – x]

Smooth

Large drop in
permeability
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Healing – Necessary Component of the Seismic Cycle
Shear Stress and Permeability Evolution
• Increasing shear stress peak is observed with increasing hold 

time (Frictional Healing)
• Permeability declines overall with temporal response to shear 

events
• Permeability decline is fast at initial stage then become slower

①

②
③④ ⑤ ⑥ ⑦

⑧

Experimental Notes
• Permeability of Green River shale #600 

grit became unresolvable after initial 
shear

• Westerly granite #150 grit stopped at 
~150 min due to limited pump capacity

• 8th shear applied to Westerly granite 
#600 grit after 5000 seconds

Hold 10000 sHold 3000 s

Slide 1mm Slide 1mm

Hold 5000 s

GRS #150 grit

WG #600 grit

WG #150 grit

GRS #600 grit

GRS #150 grit

WG #600 grit

WG #150 grit
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Shear Permeability Enhancement
Shear Induced Permeability Enhancement
• Later stage shear slip + Incremented duration of prior slip  Significant 

permeability enhancement
• Permeability continuously decreases during hold (Pressure solution?)
• Prior slip permeability recovery took 70 minute after slip ⑦,  WG #600 grit case
• Permeability increase appears to be linear to slip distance
• The enhancement is least apparent with rougher surface granite (WG #150 grit)
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Pressure solution 
• Permeability reduction due to pressure solution in all cases seems to 

follow power law decay                 with power p =-0.37  
• The enhancement can be significant after extremely long (natural scale) 

holds
• Can this be applied to natural hydraulic systems?
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Magnitude of Permeability Enhancement
Absolute perm increase: rougher granite > smoother granite > shale
Normalized perm increase: shale > smoother granite > rougher granite
Shear permeability increase with duration of prior hold time for 
Westerly granites
Shear permeability slightly decreases with prior hold time for Green 
River shale
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Response to Laboratory Earthquakes (Stick Slip) 
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Frictional-Stability-Permeability and Reaction

Experiments:

• Eagle Ford 
Shale

• Two fluids:
• pH 2.5
• pH 7.8

• xCT Imaging 
before and 
after flow
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Frictional-Stability-Permeability and Reaction

pH 2.5
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Frictional-Stability-Permeability and Reaction
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Stability-Permeability Relations in Composites/Mixtures 

Friction

Stability (a-b)

Friction

Stability (a-b)

Mono-mineralic Multi-mineralic

[Ikari et al., Geology, 2011]



Introduction & Motivation
CO2 bleached sand stone and silt stone 
showed lower fracture toughness
(Major et al. 2014)

Lower Fracture Toughness

Lower Fracture Toughness Unaltered Entrada Sand Stone: quartz 
rich, minor feldspar and calcite, with 
hematite coating.

Altered Entrada Sand Stone: hematite 
coating is dissolved, replaced by goethite, 
no significant change in quartz, feldspar, 
and calcite.
(Major et al. 2014)

Mineralogy Difference

Hematite 
Globules

Goethite
Precipitation

Paleo-fluid
Alteration

(Eichhubl et al. 2004)



DEM Model Setup

(Marone, 1999)



Shear Strength -- Unaltered vs Altered
Evolution of friction at 10 MPa normal stress [other normal stresses (5, 15 MPa) 
show similar trend].

• CO2 altered synthetic gouge shows 
LOWER frictional strength (shear 
strength) than unaltered synthetic 
gouge.

• Unaltered gouge shows HIGHER
shear strength with more coating 
particles.
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Slip-Stability – Unaltered versus Altered
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Permeability Evolution
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Accomplishments to Date
ACCOMPLISHMENTS
– VS and SHS Experiments

• Mechanisms-based seismicity-permeability evolution RSF-k
• VS experiments on broad suite of natural and artificial samples
• Nascent stability-permeability relations (indicate larger stability smaller dk) 
• Important role of healing on perm-cycle confirmed
• Important role of reactive transport on perm-evolution and potentially on stability

– Imaging
• Frozen post-test fractures 
• Completed first imaging and segmentation of sheared fractures

– Modeling
• DRP models for friction and stability – gouge - compared with mixtures data

– Enables testing of laboratory data for stability and permeability
– Extended to CO2 altered samples

• Developed RT models for stiffness and permeability evolution of fractures
ONGOING
– Refine Mechanistic Understanding of Behaviors

• VS stability experiments – systematic roles of mineralogy and additionally roughness
• SHS experiments for healing and recurrence and consequences for multiphase flow
• Reactive transport properties on sheared fractures

– Integrating modeling and experiments and imaging 32



Synergistic Opportunities
– TILT.princeton.edu

– Linkages with:
• Explored broad suite of mineralogies that 

are applicable to various CO2
demonstration projects and others

• Projects exploring field scale response -
URLs and field experimentation 
(Guglielmi, Aix-Marseille & LBNL)

– Seismicity-permeability correlations 
– Linkages across scales for upscaling
– LSBB (Carbonate), Tournemire

(Shale), Mt Terri (Shale)
• Imaging in vivo (Dustin Crandall)

33



Summary

34

• Rupture of caprocks is a potentially important issue in CCS where:
– Large overpressures may result from CO2 injection
– May result in seismic (felt) or aseismic rupture
– May result in loss of inventory

• Absent and needed are data/information to constrain:
– Seismic and aseismic reactivation of faults/fractures – distribution of felt/aseismic events?
– Healing of faults/fractures – what are event recurrence intervals?
– Evolution of multiphase flow and transport properties – likelihood of breaching and loss?

• Develop methodologies for:
– Integration of process measurements and imaging at microcscale
– Scaling microscale-to-mesoscale via digital rock physics models as a new tool

• Apply to CCS by:
– Enabling the screening of potential caprock materials for suitability and durability
– Providing a consistent view of the likelihood and consequences of breached seals on 

seismic risk and loss of inventory for candidate CO2 storage reservoirs.



Appendix Following
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Organization Chart/ Communication Plan

Communication plan: Biweekly Skype [Oct 23; Nov 6, ….]
Biannual meeting








Modeling 

D. Elsworth (PSU)



Caprock Screening Heuristics

Task 4.2

C. Peters (Princeton)

J. Fitts (Princeton)



Digital Rock Physics Models

Task 4.1

D. Elsworth (PSU)

3D Imaging

Task 3.2

J. Fitts (Princeton)

Fault Rheology and Transport

Task 3.1

D. Elsworth (PSU)

Baseline Characterization

Tasks 2.4

J. Fitts (Princeton)

Collect Caprocks

Task 2.1

C. Peters (Princeton)



Project co-PI

J. Fitts (Princeton)

C. Peters (Princeton)

Project PI/PD

D. Elsworth

(Penn State)

Caprock Analogs

J. Fitts  (Princeton)

Experimental Characterization of Fault Rheology

D. Elsworth (Penn State)

Sinter Analogs 

Tasks 2.2 & 2.3

J. Fitts (Princeton)
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Gantt Chart
SCHEDULE of TASKS and MILESTONES

PI Y1Q1 Y1Q2 Y1Q3 Y1Q4 Y2Q1 Y2Q2 Y2Q3 Y2Q4 Y3Q1 Y3Q2 Y3Q3 Y3Q4
O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S

Elsw orth

Fitts
sedimentary formation samples
SubTask 2.1 – Collect Homogeneous and Mineralogically Peters
Complex Sedimentary Rocks 
SubTask 2.2 – Sinter Mineral Mixtures to Create(Fitts) Fitts
 Idealized Analogs of Sedimentary Rocks 
SubTask 2.3 – Conduct Baseline Characterization of Fitts
Natural and Synthetic Caprocks (Fitts)

Elsw orth
Subtask 3.1 -- Evolution of Fault Rheology Elsw orth
and Transport Parameters 
Subtask 3.2 -- 3D Imaging of fault contact area, fault Fitts
geometry, and mineralogy & textures 

Elsw orth
Subtask 4.1 -- Digital rock physics of response Elsw orth
Subtask 4.2 -- Caprock screening heuristics Peters/Fitts

BP1 Oct 2014 to Sept 2015 BP2 Oct 2015 to Sept 2016 BP3 Oct 2016 to Sept 2017

Task 1 -- Project management and planning

Task 2 -- Collect, synthesize and characterize 

Task 3 -- Laboratory Experimentation

Task 4 -- Modeling for Response and Caprock 
Screening
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