Targeted Mineral Carbonation to Enhance Wellbore Integrity

DE-FE0026582

Zhiyuan Tao, Lyu Xiaotong, Dan Plattenberger, Andres Clarens University of Virginia

Flo Liang, Jeff Fitts and Catherine Peters Princeton

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 2, 2017

the concept

underlying principle

reaction kinetics vs. depth

early results

shale grains

shale grains + CO_2 + $CaSiO_3$

benefit to the program

- Program goals
 - >99% storage permanence
 - predict storage capacity to +/-30%
 - improve storage efficiency.
- Project benefits: This project will produce new materials and a novel method to seal leakage pathways that transect the primary caprock seal and are associated with active injection, extraction or monitoring wells (e.g., wellbore casing and cement, and proximal caprock matrix)

project overview: goals and objectives

- Project management and planning
- Coated silicate development, characterization and interaction in porous media
 - Fluid mixing and buoyancy experiments at formation T/P to optimize material properties
 - Evaluate the performance of coated mineral silicates in packed columns
 - Targeted carbonation in porous media flow
 - Targeted Carbonation of fractured wellbore-zone materials
- Imaging quantification of carbonation in pore networks and fractures
 - 3D imaging of targeted carbonation in porous media
 - 3D Imaging of targeted carbonation in fractured wellbore-zone materials
- Modeling Targeted Carbonation
 - Multiphase fluid mixing and flow modeling
 - Pore network/fracture reactive transport modeling
 - Forward modeling of mitigated wellbore integrity

nanoparticle core

mineral	reaction	E _a (kJ/mol)
basaltic glass	$MgSiO_3 + CO_2 = MgCO_3 + SiO_2$	80.0
olivine	$MgSiO_4 + 2CO_2 = 2MgCO_3 + 2SiO_2$	76.2
serpentine	$Mg_3Si_2O_5(OH)_4 + 3CO_2 = 3MgCO_3 + 2SiO_2 + 2H_2O$	70.1
albite	$2NaAlSi_2O_8 + CO_2 = Na_2CO_3 + 6SiO_2 + Al_2O_3$	65.0
wollastonite	$CaSiO_3 + CO_2 = CaCO_3 + SiO_2$	54.7
talc	$Mg_3Si_4O_{10}(OH)_2 + 3CO_2 = 3MgCO_3 + 4SiO_2 + H_2O$	51.4
anorthite	$CaAl_2Si_2O_8 + CO_2 = CaCO_3 + 2SiO_2 + Al_2O_3$	48.4

pseudowollastonite v wollastonite

wollastonite

pseudo wollastonite

diffusion limited results - kinetics and transport

Diffusion

Diffusion

Diffusion

Ծµ m

c

complex reaction pathway

Unreacted Pseudowollastonite

Calcium Carbonate

O-Si-Ca-C Phase

raman scans of column

15

effects on permeability

1D geochemical modeling approach

$$\frac{\text{Reactions}}{\text{CaSiO}_{3(s)} + 2\text{H}^{+} \leftrightarrow \text{Ca}^{2+} + \text{SiO}_{2(aq)} + \text{H}_{2}\text{O}}$$

$$Ca^{2+} + CO_{3}^{2-} \leftrightarrow \text{CaCO}_{3(s)}$$

$$SiO_{2(aq)} \leftrightarrow SiO_{2(am)} \qquad 17$$

1D geochemical modeling results

CaCO₃ and SiO_{2(am)} precipitation concentrate near the opening of the glass bead column, leading to significant porosity decrease by 45 hrs of reaction.

45 hrs 1D geochemical modeling results

- CO₂ diffuses into the column, lowering pH.
 - The pH increases as CaSiO₃ dissolves.
 - The pH throughout the column is largely controlled by CaSiO₃ dissolution.
 - Differences in pH and CO₂ at the top vs. bottom of the column may lead to the formation of unaccounted solids in the model.

xCT images of columns

the material filling the pore space at the top and bottom of the column.

xCT images of columns

pore connectivity decrease

pore network modeling

PDMAEMA polymer coating

- LCST: vary from 14 to 50°C in pure water (46°C in pH 7 buffer)
- Coating: surface-initiated atom transfer radical polymerization (SI-ATRP) on the surface of wollastonite nanoparticles
- pH responsive: phase transition and solving/collapsing under low pH condition.

fracture test-rig

accomplishments to date

- Discovered secondary mineral phase precipitates in the psuedowollastonite/CO₂ system
- Actively working to characterize the properties of these precipitates
- Observed dramatic permeability reductions when these minerals form and there could be synergies with CaCO₃
- Are characterizing these permeability reductions based on xCT analysis of pore structure
- Synthesized coatings with a LCST of 40°C
- Developed 1D model of column dynamics to help understand the reaction kinetics and transport dynamics in our system
- Built an experimental test-rig to evaluate the performance of these cements in fractures 27

lessons learned

- Psuedowollastonite reactivity very different than wollastonite
- The ability to precipitate something other than a carbonate appears to impart important properties from the standpoint of permeability reduction
- We have still not fully characterized the mechanism by which these precipitates form, but we are getting close
- Some CO₂ appears to be necessary but not too much
- Organic coating appear to work to limit reactivity, though not perfectly
- The resulting cements are effective at joining a fractured surface

synergy opportunities

- w/ other PIs in this program:
 - Experience with nanoparticles use in fractures and porous media
 - Functionalization
 - Transport
 - Modeling
- w/ other PIs in Basalt storage area:
 - Reaction of carbonates in high P_{CO2} environments where the interplay between dissolution and precipitation needs to be controlled

project summary

- Mineral silicates can be used to cement porous media and reduce its permeability when delivered as nanoparticles and exposed to a high P_{CO2} environment
- The unanticipated formation of silicate hydrates, driven by the presence of low partial pressures of CO₂, could be an important step to producing stable cements
- Significant drops in permeability have been observed and these precipitates are very resistant to re-dissolution in the presence of CO₂.
- Temperature sensitive coatings appear to be able to help us selectively deploy these materials at the desired depths

many thanks

Organization Chart

Gantt Chart

SCHEDULE of TASKS and MILESTONES		BP1 Jan 2016 to Dec 2016			BP2 Jan 2017 to Dec 2017			2017	5P3 Jan 2016 to Dec 2018				
	PI	1 F M		Y1Q3	Y1Q4	Y2Q1	Y202	Y2Q3	Y2Q4	Y3Q1	Y3Q2	Y3Q3	Y3Q4
Task 1 - Project management and planning	Clarens	<u>a 15 lau</u>	o Im Is	IN INTO	Tolk ID	al- M	to let	e Ivia		- F M	le leila		
ask 2 - Coated silicate development, characterization and Interactions in porcus media (Clarene)	Clarens												
SubTask 2.1 – Fluid mixing and buoyancy experiments at formation T/P to optimize fluid properties	Clarens												
SubTask 2.2 – Optimize Calcium source transport to targeted flow pathways	Clarens												
SubTask 2.3 – Targeted carbonation in porcus media flow experiments using materials optimized in SubTasks 2.162.2	Clarens			-									
SubTask 2.4 – Targeted carbonation in fractured wellbore-zone materials	Fitts												
task 3 Imaging carbonation in pore networks and fractures Subtask 3.1 3D imaging of targeted carbonation in porous media	Fitts							4					_
from SubTask 2.3						1		6				2	
Subtask 3.2 – 3D Imaging of targeted carbonation in fractured wellbore-zone materials from SubTask 2.4	Fitts												
Task 4 - Modeling Targeted Carbonation	Clarens												
Subtask 4.1 – Multiphase fluid mixing and flow modeling Subtask 4.2 – Pore network/fracture reactive transport modeling	Clarens											-	-
Subtask 4.3 - Forward modeling of mitigated wellbore integrity	Clarens/Fitts												

Bibliography

- Zhiyuan, T., J.P. Fitts, A.F. Clarens, Feasibility of using carbonation reactions to mitigate environmental risks in the deep subsurface. Environmental Engineering Science. In Press. October 2016
- Ma, Z., X. Jia, J. Hu, Z. Liu, H. Wang and F. Zhou (2013). "Mussel-Inspired Thermosensitive Polydopamine-graft-Poly(N-isopropylacrylamide) Coating for Controlled-Release Fertilizer." Journal of Agricultural and Food Chemistry 61(50): 12232-12237.
- H. Ismail, R. Shamsudin et al. (2013). Synthesis and Characterization of Nano-Wollastonite from Rice Husk Ash and Limestone. Material Science Forum 756: 43-47.
- Nogues, J.P., M.A. Celia et al (2013). Permeability Evolution Due to Dissolution and Precipitation of Carbonates using Reactive Transport Modeling in Pore Networks. Water Resources Research 49: 1-16
- J. Zhang, R.D.K. Misra (2007). Magnetic Drug-targeting Carrier Encapsulated with Thermosensitive Smart Polymer: Core-shell Nanoparticle Carrier and Drug Release Response. Acta Biomaterialia 3: 838-850
- Hugo Almeida, Maria Amaral et al. (2012). Temperature and pH Stimuli-responsive Polymers and Their Applications in Controlled and Self-regulated Drug Delivery. Journal of Applied Pharmaceutical Science 02 (06): 01-10.
- Ji Liu et al. (2014). Gold Nanorods Coated with a Thermo-responsive Poly(ethylene glycol)b-poly(N-vinylcaprolactam) Corona as Drug Delivery Systems for Remotely near Infraredtriggered Release. Polym. Chem., 2014, 5, 799.