

Results from the In Situ Fault Slip Experiment at Mont Terri

Yves Guglielmi, Jens T. Birkholzer, Jonny Rutqvist, Pierre Jeanne Lawrence Berkeley National Laboratory

U.S. Department of Energy

National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

Presentation Outline

- Benefit to the Program
- Project Overview
 - Goals and Objectives
 - Mont Terri Setting and Fault Zone Geology
 - The Mont Terri Laboratory Analog to a Fault Affecting a Low Permeable Caprock?
 - Instrumentation, Test Design and Fault activation protocol
 - Capturing static-to-dynamic three-dimensional fault movements associated to pore pressure variations
 - Sequence of semi-controlled injections to induce fault slip and trigger seismicity
 - Analyses of Fault Slip, Induced Seismicity and Leakage
 - Processing fault elastic properties, reactivation modes and state of stresses
 - Estimation of permeability-vs-pressure relationships
- Accomplishments to Date
- Synergy Opportunities
- Project Summary and Next Steps

Benefit to the Program

- This project improves and tests technology to assess and mitigate potential risk of induced seismicity as a result of injection operations.
- The technology improves our understanding of fault slip processes and provides new insights into the seismic and leakage potential of complex fault zones.
- > This contributes to Carbon Storage Program's effort:
 - to ensure for 99% CO_2 storage permanence
 - to predict CO₂ storage capacity in geologic formations to within ±30 percent

Project Overview: Goals and Objectives

- In situ study of the aseismic-to-seismic activation of a fault zone in a clay/shale formation
 - Conditions for slip activation and stability of faults
- Implications of fault slip on fault potential leakage
 - Evolution of the coupling between fault slip, pore pressure, and fluid migration
- Tool Development and Test Protocols
 - Development of a tool and protocol to characterize the seismic and leakage potential of fault zones in clay/shale formations

A Fault Affecting a Low-Permeable Layer Analog to a Reservoir Cap Rock Mont Terri Underground Rock Laboratory Mt-Terri highway tunnel Experiment 150m Depth of FS Experiment ~350m SSE NINIA Mont Russelin Mont Terri tunnel Main Fault tunne 1000 Mont Terri rock laboratory thrust planes 500 ENSI normal/strike-slip faults **swiss**topo Focal mechanisms -500 (microseismicity) 06.04.2000 MI = 3.21strike-slip faulting -1000 Permo-Carboniferous sediments Late post-Variscan basement thrusting/reverse faulting -1500 normal faulting

Fault Zone Structure and Complexity

A ~3m-thick core with gouge + foliation + secondary (Riedel-like) shear planes A damage zone with secondary fault planes with slickensided surfaces

Measurement of Fault Movements and Induced Seismicity

Passive seismic monitoring: Two 3C-accelerometers and two geophones

Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP) *Using two 3-components borehole deformation sensor mHPP probe*

- 3C-accelerometers
- Flat response 2Hz-4kHz
- 10 kHz sampling frequency

Fault Activation Protocol

- Injection pressure imposed step-by-step in four packed-off intervals set in different fault zone locations
- Synchronous monitoring of pressure, flowrate, 3D-displacement and micro-seismicity

Example of Borehole Pressure-Displacement signals

• Pressure imposed step-by-step

Monitoring
 Injection Flowrate
 +
 Borehole wall

3D displacement

Large Fault leakage at failure in shear

Example Test at 340.6m depth in Clay Fault Mt Terri URL (Switzerland)

Different modes of reactivation In and Out of the fault zone

Role of Contrasted Elastic Modulus (and fracture toughness)

Local Factor of 10⁶-to-10⁷ permeability increases (FOP-Injection Pressure) ~ ($\sigma_n - \tau/\mu$) or σ_3

Comparison with Barbados active decollement fault

- Comparable behaviors and orders of magnitude
- Threshold could in both cases correspond to shear activation

Above FOP, the local Factor of 10⁶-to-10⁷ permeability increases is better explained when related to strain rate...

Experimental pressure curve

Aseismic slip preceeding Leakage and Seismicity

Example Test at 340.6m depth in Clay Fault Mt Terri URL (Switzerland)

Accomplishments to Date

- A unique fault reactivation data set has been generated characterized by synchronous monitoring of fault movement, induced earthquakes, pore pressure, and injection flowrate
- A new measurement tool and a test protocol have been developed to characterize, in a controlled field setting, the seismic and leakage potential of fault zones
- Comparison with other field activation experiments and natural active fault leakage observations

Synergy Opportunities

• The SIMFIP Probe is now being upgraded for higher pressure and temperature environments

- It will be operated to monitor hydrofracking and hydroshearing experiments planned
 in the EGS-Collab project SIGMA-V
 - Operating pressure 40MPa
 - Measurement range: Uaxial = 0,7mm Uradial = 3,5mm
 - Resolution of 5µm
 - 1000 Hz sampling frequency

Summary

Key Findings

- Insights on the seismic nucleation phase common to all experiments
 - Large patch of aseismic slip associated with high dilation
 - High increase in permeability (mainly in the Fault Damage Zone)
 - With effective Coulomb stress
 - With Dilatant Shear strain « rate » distributed in the Fault Zone volume

(which drives a « sparse » seismicity)

- Location and Origin of seismicity induced by fluid injections?
 A combination of fracture mechanics and earthquake nucleation concepts
 - Effect of strength + permeability properties variations in the fault zone
 - Accelerated creep with large dilation could cause a frictional transition (and episodic instability)

Future Plans

- Develop and calibrate a physics based fully coupled hydromechanical approach for predictions of seismic-to-aseismic fault rupture and leakage at CO₂ sequestration depths (considering dilation in contact-yielding concepts?)
- Evaluate and measure potential for long-term fault sealing capabilities in cap-rocks

 New FS-B experiment : Test of existing techniques of repeated active seismic imaging, passive microseismic and strain monitoring to characterize and to monitor fault slip and long term leakage evolution.

Relevance to SubTER Crosscut

Fit For Purpose Simulation Capabilities

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- This project improves and tests technology to assess and mitigate potential risk of induced seismicity as a result of injection operations.
- The technology improves our understanding of fault slip processes and provides new insights into the seismic and leakage potential of complex fault zones.
- > This contributes to Carbon Storage Program's effort:
 - to ensure for 99% CO_2 storage permanence
 - to predict CO₂ storage capacity in geologic formations to within ±30 percent

Project Overview: Goals and Objectives

- In situ study of the aseismic-to-seismic activation of a fault zone in a clay/shale formation
 - Conditions for slip activation and stability of faults
- Implications of fault slip on fault potential leakage
 - Evolution of the coupling between fault slip, pore pressure, and fluid migration
- Tool Development and Test Protocols
 - Development of a tool and protocol to characterize the seismic and leakage potential of fault zones in clay/shale formations

Organization Chart

- Project participants: International Collaborations
 - Yves Guglielmi (LBNL, USA) PI Field test analyses, tool and protocol development
 - Jonny Rutqvist , Jens Birkholzer, Pierre Jeanne (LBNL, USA) Hydromechanical modeling
 - Christophe Nussbaum (Swisstopo, Switzerland) Fault structure, kinematics and stress analyses
 - B.Valley, M.Kakurina (University of Neuchatel, Switzerland) Three-dimensional fault zone geological modeling
 - F.Cappa, Louis de Barros (University of Nice, France) Seismic analysis
 - Kazuhiro Aoki (JAEA, Japan) Laboratory friction tests
 - Derek Ellsworth, Chris Marone (Pennstate University, USA) Rate and state friction laboratory experiments and modeling

Gantt Chart

	2014	2015	2016	2017	2018
FS - Experiment design					
Drilling					
FS testing					
Analyses of fault properties and stress					
Analyses of fault slip stability and seismicity					
FS-B Experiment design					
FS-B setting and tests					

Bibliography

- Y.Guglielmi, J.Birkholzer, J.Ruqvist, P.Jeanne, C.Nussbaum, 2016, Can fault leakage occur before or without reactivation? Results from an in situ fault reactivation experiment at Mt Terri, <u>Greenhouse Gas Control Technologies 13th International</u> <u>Conference</u> (Lausanne, Switzerland, Nov. 14-18 2016).
- L de Barros, G.Daniel, Y.Guglielmi, D.Rivet, H.Caron, X.Payre, G.Bergery, P.Henry, R.Castilla, P.Dick, E.Barbieri, M.Gourlay, 2016, Fault structure, stress or pressure control of the seismicity in shale? Insights from a controlled experiment of fluidinduced fault reactivation, <u>Journal of Geophysical Research</u>, DOI 10.1002/2015JB012633
- <u>J.Rutqvist, A. P. Rinaldi, F.Cappa, P.Jeanne, A.Mazzoldi, L.Urpi, Y.Guglielmi,</u> V.Vilarrasa (2016), Fault activation and induced seismicity in geological carbon storage Lessons learned from recent modeling studies. <u>Journal of Rock Mechanics and</u> <u>Geotechnical Engineering</u>, <u>Volume 8, Issue 6</u>, December 2016, Pages 789-804, <u>https://doi.org/10.1016/j.jrmge.2016.09.001</u>
- P.Jeanne, Y.Guglielmi, J. Rutqvist, C.Nussbaum, J.Birkholzer (accepted July 2017), Field Characterization of Elastic Properties Across a Fault Zone Reactivated by Fluid Injection, Journal of Geophysical research.
- Bonnelye, A., A. Schubnel, C. David, P. Henry, Y. Guglielmi, C. Gout, A.-L. Fauchille, and P. Dick (2017), Elastic wave velocity evolution of shales deformed under uppermost crustal conditions, J. Geophys. Res. Solid Earth, 122, 130–141, doi:<u>10.1002/2016JB013540</u>.
- Bonnelye, A., A. Schubnel, C. David, P. Henry, Y. Guglielmi, C. Gout, A.-L. Fauchille, and P. Dick (2017), Strength anisotropy of shales deformed under uppermost crustal conditions, J. Geophys. Res. Solid Earth, 122, 110–129, doi:<u>10.1002/2016JB013040</u>.
- Rivet, D., L. De Barros, Y. Guglielmi, F. Cappa, R. Castilla, and P. Henry (2016), Seismic velocity changes associated with aseismic deformations of a fault stimulated by fluid injection, Geophys. Res. Lett., 43, 9563–9572 doi:10.1002/2016GL070410.