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Benefit to the Program

« This project improves and tests technology to assess
and mitigate potential risk of induced seismicity as a
result of injection operations.

« The technology improves our understanding of fault slip
processes and provides new insights into the seismic
and leakage potential of complex fault zones.

» This contributes to Carbon Storage Program’s effort:
— to ensure for 99% CO, storage permanence

— to predict CO, storage capacity in geologic formations to within
+30 percent



Project Overview:
Goals and Objectives

* In situ study of the aseismic-to-seismic activation
of a fault zone In a clay/shale formation
— Conditions for slip activation and stability of faults

 Implications of fault slip on fault potential leakage

— Evolution of the coupling between fault slip, pore
pressure, and fluid migration

* Tool Development and Test Protocols

— Development of a tool and protocol to characterize the
seismic and leakage potential of fault zones In
clay/shale formations



A Fault Affecting a Low-Permeable Layer
Analog to a Reservoir Cap Rock ===
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Fault Zone Structure and Complexity

A ~3m-thick core with gouge + foliation + secondary (Riedel-like) shear planes
A damage zone with secondary fault planes with slickensided surfaces

The unaltered structure of the
Main Fault has been accessed
through gallery outcrops and fully
cored boreholes
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Measurement of Fault Movements
and Induced Seismicity

Passive seismic Step-Rate Injection Method for Fracture
monitoring: In-Situ Properties (SIMFIP)

Two 3C-accelerometers Using two 3-components borehole deformation
and two geophones sensor mHPP probe
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» Flat response 2Hz-4kHz
* 10 kHz sampling frequency

Measurement range:
Uaxial = 0,7mm
Uradial = 3,5mm
* Resolution of 3uym 7
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Fault Activation Protocol

* Injection pressure imposed step-by-step in four packed-off
intervals set in different fault zone locations

« Synchronous monitoring of pressure, flowrate, 3D-displacement
and micro-seismicity
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Example of Borehole Pressure-Displacement signals

* Pressure imposed
step-by-step
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Large Fault leakage at failure in shear

FPP : Fault Propagation Pressure
FOP :Fault Opening Pressure
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Different modes of reactivation In and Out of the fault zone
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Role of Contrasted Elastic Modulus (and fracture toughness)
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Local Factor of 10%-t0-107 permeability increases
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Above FOP, the local Factor of 10°-t0-107 permeability increases
is better explained when related to strain rate...
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Aseismic slip preceeding Leakage and Seismicity
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Accomplishments to Date

« A unique fault reactivation data set has been generated
characterized by synchronous monitoring of fault movement,
induced earthquakes, pore pressure, and injection flowrate

« A new measurement tool and a test protocol have been
developed to characterize, in a controlled field setting, the seismic
and leakage potential of fault zones

« Comparison with other field activation experlments and natural
active fault leakage

observations




Synergy Opportunities

* The SIMFIP Probe

IS now being upgraded for higher pressure
and temperature environments

It will be operated to monitor hydrofracking

and hydroshearing experiments planned
In the EGS-Collab project SIGMA-V

Operating pressure 40MPa

Measurement range:

Uaxial = 0,7mm

Uradial = 3,5mm

Resolution of 5ym

1000 Hz sampling frequency 18



Summary

Key Findings

* Insights on the seismic nucleation phase common to all experiments
— Large patch of aseismic slip associated with high dilation
— High increase in permeability (mainly in the Fault Damage Zone)
« With effective Coulomb stress

« With Dilatant Shear strain « rate » distributed in the Fault Zone
volume

(which drives a « sparse » seismicity)

« Location and Origin of seismicity induced by fluid injections?
A combination of fracture mechanics and earthquake nucleation
concepts
- Effect of strength + permeability properties variations in the fault zone
- Accelerated creep with large dilation could cause a frictional
transition (and episodic instability)
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Future Plans

» Develop and calibrate a physics based fully coupled hydromechanical approach for
predictions of seismic-to-aseismic fault rupture and leakage at CO, sequestration
depths (considering dilation in contact-yielding concepts?)

« Evaluate and measure potential for long-term fault sealing capabilities in cap-rocks
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+ New FS-B experiment : Test of existing techniques of repeated active seismic imaging,
passive microseismic and strain monitoring to characterize and to monitor fault slip and
long term leakage evolution. 20
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Relevance to SUbTER Crosscut

Subsurface Stress and Induced Seismicity Pillar
IS relevant to a range of subsurface applications
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Appendix

— These slides will not be discussed during the presentation, but
are mandatory.
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Benefit to the Program

« This project improves and tests technology to assess
and mitigate potential risk of induced seismicity as a
result of injection operations.

« The technology improves our understanding of fault slip
processes and provides new insights into the seismic
and leakage potential of complex fault zones.

» This contributes to Carbon Storage Program’s effort:
— to ensure for 99% CO, storage permanence

— to predict CO, storage capacity in geologic formations to within
+30 percent
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Project Overview:
Goals and Objectives

* In situ study of the aseismic-to-seismic activation
of a fault zone In a clay/shale formation
— Conditions for slip activation and stability of faults

 Implications of fault slip on fault potential leakage

— Evolution of the coupling between fault slip, pore
pressure, and fluid migration

* Tool Development and Test Protocols

— Development of a tool and protocol to characterize the
seismic and leakage potential of fault zones In

clay/shale formations
24



Organization Chart

* Project participants: International Collaborations

Yves Guglielmi (LBNL, USA) — PI — Field test analyses, tool and
protocol development

Jonny Rutqvist , Jens Birkholzer, Pierre Jeanne (LBNL, USA) —
Hydromechanical modeling

Christophe Nussbaum (Swisstopo, Switzerland) — Fault structure,
kinematics and stress analyses

B.Valley, M.Kakurina (University of Neuchatel, Switzerland) —
Three-dimensional fault zone geological modeling

F.Cappa, Louis de Barros (University of Nice, France) — Seismic
analysis
Kazuhiro Aoki (JAEA, Japan) — Laboratory friction tests

Derek Ellsworth, Chris Marone (Pennstate University, USA) — Rate

and state friction laboratory experiments and modeling e



Gantt Chart

FS - Experiment
design

Drilling

FS testing

Analyses of fault
properties and stress

Analyses of fault slip
stability and
seismicity

FS-B Experiment
design

FS-B setting and
tests

2015 2016 2017 2018
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