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Project Overview: Proposed

Production-scale verification of CWC-CSEM as MVA technology
— Multi-phase system, fluid content-sensitive electrical conductivity

— Dynamic system with WAG cycles, time-lapse monitoring

— Low-cost monitoring through use of existing wellbores

Integrated reservoir MVA
— Coupled simulation
— Constrained inversion

— History matched with time-lapse CWC-CSEM and production data
— Collaboration with regional partnership and EOR monitoring

Field site: FWU



Project Overview: Updated

Production-scale verification of CWC-CSEM as MVA technology
— Multi-phase system, fluid content-sensitive electrical conductivity

— Dynamic system with CO, cycles, time-lapse monitoring

— Low-cost monitoring through use of existing wellbores

Integrated reservoir MVA
— Coupled simulation
— Constrained inversion

— History matched with time-lapse CWC-CSEM and production data
— Collaboration with regional partnership and EOR monitoring

Field site: Bell Creek, Montana



Methodology

Charged wellbore casing controlled source electromagnetics

Electrical conductivity depends on reservoir fluid phase (oil / CO,)
Validation at active CCS-EOR project

Constrained inversion using existing characterization

Static near-surface correction from TEM data

Integration with reservoir simulation

History matching for validation
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CWC-CSEM: Concept
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Reservoir model
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Technical Status

Link between reservoir model and EM software

Original reservoir model - S Converted for EM simulation
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Technical Status

Full 3D geobody model for EM simulations must:

e Extend from surface to basement

» Capture significant geologic/conductive layers

* Incorporate reservoir model at appropriate depth
e Extend laterally beyond reservoir area



Technical Status

Significant Layers

Air=1;
Seismic Horizons to 3D Geobody Model Shallow = 2;
RedCave = 3;
UpWell = 4;
LowWell = 5;
UpChase = 6;
LowChase = 7;
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Doug = 10;
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Tonk = 12;
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Technical Status

full 3D geobody model

Seismic Horizons to 3D Geobody Model Insert reservoir model




Preliminary CWC-CSEM modeling at FWU
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Technical Status

New field site: Denbury and EERC

e Interested in research project
— Support new and cost-effective monitoring technologies
— WIll provide full access to field site, boreholes, and reservoir model

« Candidate Site: Bell Creek, Montana
— Phase 5 area has not seen COZ2 yet, ideal for baseline data
— CO2 injection starts between mid-August and end of September
— Significantly shallower reservoir
— Large collection of boreholes (casings) available

 Requested approval from NETL to change sites: Approved!
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Technical Status

CWC-CSEM Simulations for Bell Creek Depths

CWC-CSEM Modeling Domain (core)
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Technical Status

Real component

Northing (m)

Imaginary component
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Technical Status

Real component Imaginary component




CWC-CSEM Simulations for Bell Creek Depths
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CWC-CSEM Simulations for Bell Creek Depths
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Technical Status

Field Surveys

Field site: Bell Creek
e First EM Survey: August 13 — 19, 2017
* Immediately prior to the Phase-5 CO, Injection

Reservoir model
« CSM/UU working closely with EERC
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Planned Field campaign: August 12-19, 2017
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Accomplishments to Date

Algorithmic and modeling developments

e All tasks on track

e Reservoir model

— Software to link reservoir model to CWC-CSEM algorithm
— Successful application to FWU model; will translate to Bell Creek

« CWC-CSEM algorithm

— Modified to work with new reservoir model format from above

— EM simulation codes enhanced: flexibility and interoperability

— User interface for CSM code made more robust and flexible

— CSM code successfully run on UU high performance computing resources ,,



Accomplishments to Date

Dissemination of information

 Web-site development
— multiphysics-mva.org & cwc-Csem.org
— Limited content at moment
— Wil be updated throughout project

 Presentation at 2017 AIChE Annual Meeting
— Topical conference: Advances in Fossil Energy R&D

— Title: Monitoring carbon sequestration using charged wellbore controlled
sources electromagnetics and integrated reservoir models
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Lessons Learned

— The need for efficient EM simulation algorithms
— The need for high performance computing facility

— The site access was a known risk, but the actual need to change
the field site did consume time and energy
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Synergy Opportunities

— Bell Creek Field site serves as the field laboratory for previous
SUbTER seismic array presentation (EERC)

 Joint inversion of seismic and EM datasets a natural opportunity
« Overlapping survey areas of investigation

— EM methods can provide de-risking of exploration projects
— Monitoring of CO,-EOR projects has wide application

— EM methods can enhance seismic data in karst, subsalt, and
anhydrite locations where seismic interpretation can be
challenging

27



Summary: Overall Project Status

Field site, reservoir modeling, field campaigns

* Reservoir modeling and initial simulations started at original site,
procedures and algorithms in place

e Combining field campaigns into four
 Back on track with a new field site at Bell Creek

* First field data acquisition campaign: August 12-19, 2017

28
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Benefit to the Program

SUbTER Program Goals

1) Ensure storage permanence for injected CO,

— [AOI-1]: Deploy and validate prototype carbon storage Monitoring, Verification, and
Accounting (MVA) technologies in an operational field environment.

2) Advancing state of knowledge in geothermal exploration

— [AOI-2]: Identify and validate new subsurface signals to characterize and image the
subsurface advancing the state of knowledge in geothermal exploration.

31



Benefit to the Program

SuUbTER Pillars

1)

2)

3)

4)

Wellbore integrity - New sensors and adaptive materials are needed to ensure
sustained integrity of the wellbore environment.

Subsurface stress and induced seismicity - Radically new approaches are
needed to guide and optimize sustainable energy strategies and reduce the risks
associated with subsurface injection.

Permeability manipulation — Greater knowledge of coupled processes will lead to
Improved methods of enhancing, impeding, and eliminating fluid flow.

New subsurface signals - DOE seeks to transform our ability to characterize
subsurface systems by focusing on four areas of research: new signals,
Integration of multiple data sets, identification of critical system transitions,
and automation. 32



Benefit to the Program

Project Benefits Statement

e Currently, there is a lack of cost-effective tools that are able to

— Probe to the required depths, and
— Be sensitive to changes in the makeup of the reservoir fluids

 Responsive technologies need to be sensitive to both
— Distribution of CO, within reservoir, and
— Overburden where leakage may occur

 The proposed project is designed to address these requirements
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Benefit to the Program

Project Benefits Statement

The project will benefit the monitoring and tracking the fate of CO, in a
storage site by advancing the state of art through the following three

components:

1) Time-lapse monitoring using charged wellbore casing controlled-source EM
(CWC-CSEM) method

— data are to be interpreted through constrained coupled inversions using reservoir models
— electrical conductivity changes mapped to the reservoir properties, fluid saturations (phase)
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Benefit to the Program

Project Benefits Statement

The project will benefit the monitoring and tracking the fate of CO, in a
storage site by advancing the state of art through the following three

components:

2) Improved characterization of reservoir properties such as relative permeability
and dynamic states such as fluid saturations
— Integrate static and dynamic properties from time-lapse EM monitoring
— Improve existing reservoir models for long-term monitoring and tracking
— Characterize the distribution and migration of CO,,
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Benefit to the Program

Project Benefits Statement

The project will benefit the monitoring and tracking the fate of CO, in a
storage site by advancing the state of art through the following three

components:

3) Development of a responsive technology capable of imaging CO, migration within
the whole overburden

36



Benefit to the Program

Project Benefits Statement

* Proposed technology relies upon
— Legacy infrastructure
— Minimal hardware installation

It will be possible to install sensors permanently with minimal
additional effort

* The field site was selected in order to:
— Validate the method at a WAG site that should provide a distinct target
— Leverage existing efforts by DOE-NETL in this area
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Project Overview:
Goals and Objectives

Goals

e Production-scale verification of CWC-CSEM as MVA technology

— Three phase system, fluid content-sensitive electrical conductivity
— Dynamic system with WAG cycles, time-lapse monitoring
— Low cost through use of legacy wellbores

* |ntegrated reservoir MVA
— Coupled simulation
— Constrained inversion

— History matched with time lapse CWC-CSEM and production data

38



Project Overview:
Goals and Objectives

Objectives

1. Develop software capabilities
— 3D CWC-CSEM simulations at reservoir scale
— Forward looking survey design, informed with reservoir simulations
— Constrained 3D inversion with a priori reservoir knowledge and near surface
statics

2. Development of best practice recommendations for CWC-CSEM

— Survey frequencies
— Data and inversion uncertainty
— Validation through CCS-EOR production data 39



Methodology

Charged wellbore casing controlled source electromagnetics

Electrical conductivity tied to reservoir fluid phase (oil / CO, / water)
Validation at active CCS-EOR project

Constrained inversion from existing characterization

Static near surface correction from TEM data

Integration with reservoir simulation

History matching for validation

cv il e A A
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Organization Chart / Communication Plan

Colorado School of Mines New Mexico Tech
* Project lead e History matching
e Survey design

 EM inversion/modeling lead

Communication plan

University of Utah e Bi-monthly virtual meetings
(GOTO Meeting, etc.)

 Annual project meetings

e Reservoir simulation lead
e Coupled modeling

Project website

United States Geological Survey * http://multiphysics-mva.org
. Field logistics lead « Outreach and collaboration

o Statistical data analysis




Proposed Schedule

Management 1.0
Annual Meeting

Field Work 2.0
CSEM 2.1

TEM 2.2
Simulation 3.0
EM 3.1

Reservoir 3.2
Coupled 3.3
Survey Design 3.4
Inversion 4.0
TEM 4.1

CSEM 4.2
Interpretation 5.0
c— 55.1
Uncertainty 5.2

History Matching 5.3
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Revised Statement of Project Objectives (SOPO)

Task 2.0 — Field Work (previous version)

Field work entails any collection of data that is performed directly as part of this
proposal. We had proposed five campaigns of data acquisition, primarily focused
on acquiring CWC-CSEM data, with a smaller component of supporting TEM
data. The acquisition of data at multiple time instances are essential for time-
lapse monitoring of the dynamic process in the active CCS-EOR site.
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Revised Statement of Project Objectives (SOPO)

Task 2.0 — Field Work (revised)

Field work entails any collection of data that is performed directly as part of this
proposal. We have proposed four campaigns of data acquisition, primarily
focused on acquiring CWC-CSEM data, with a smaller component of supporting
TEM data. The acquisition of data at multiple time instances are essential for
time-lapse monitoring of the dynamic process in the active CCS-EOR site. Since
Denbury does not plan to use a water alternating gas (WAG) cycle, the field will
be somewhat less dynamic and the reduction in field campaigns should have
minimal impacts on the project goals.
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* No publications yet
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