Integrated Carbon Capture and Storage in the Louisiana Chemical Corridor DE-FE0029274/0001

David E. Dismukes, Ph.D. Professor & Executive Director Center for Energy Studies Louisiana State University

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

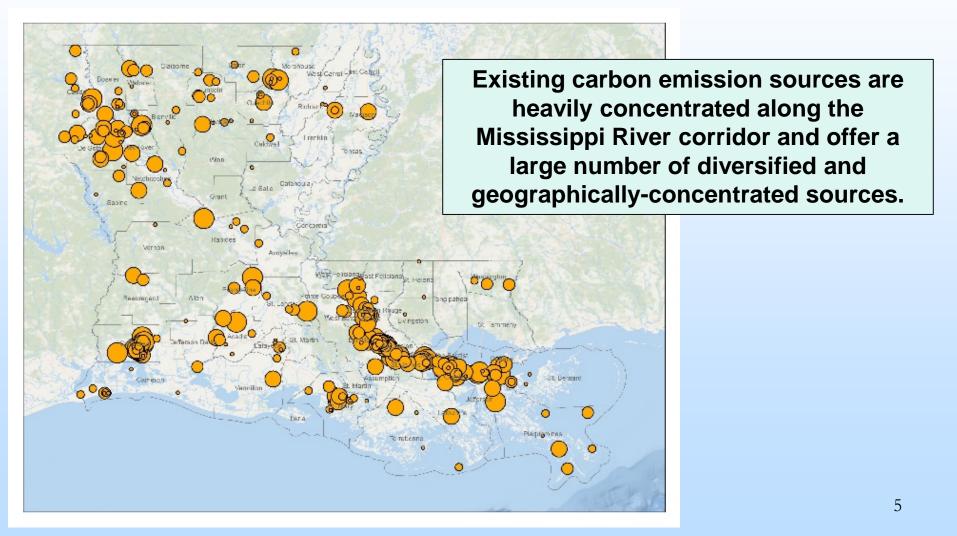
Presentation Outline

- 1) Project Overview
- 2) Technical Status
- 3) Research Accomplishments
- 4) Lessons Learned
- 5) Next Steps/Future Activities

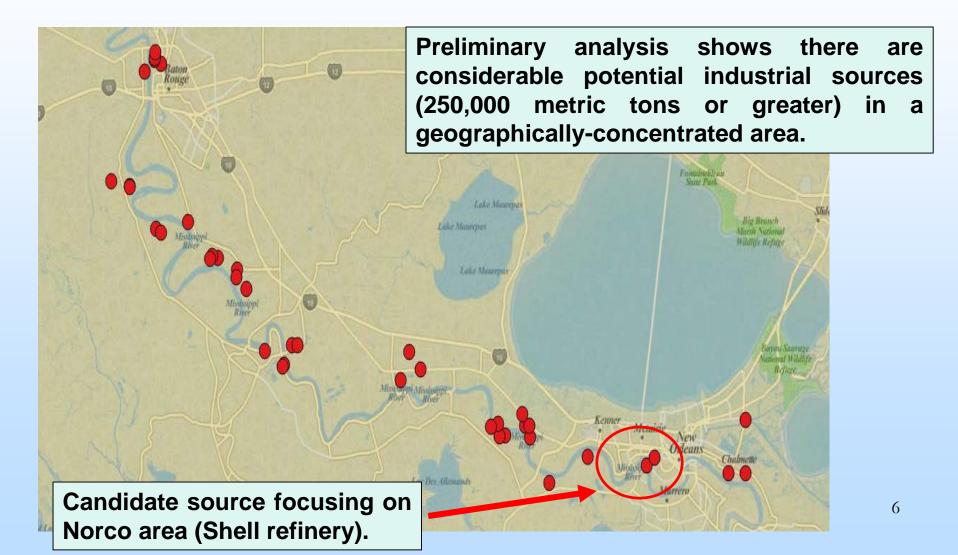
6) Appendix

Project Overview

Having a geographically-concentrated physical location with diversified sources will be critical in developing positive feasibility outcomes for an industrial CCS project.


The Louisiana industrial corridor is a well-suited location for industrial CCS since:

- 1) There are a large number of geographically-concentrated and diversified sources of CO_2 .
- 2) There are a large number of geographically-concentrated and diverse storage locations (or "sinks").
- 3) There are sufficient number of opportunities to develop **transportation infrastructure linking supply to storage** in these areas.
- 4) This is a region with a **long history and commercial experience in moving and storing a number of different hydrocarbons**, as well as other hydrocarbon wastes, into underground geological formations.


Technical Status

Task No.	Major Task Heading (sub-tasks not included)	Status Summary
1.0	Project Management	Ongoing
2.0	Economic feasibility and public acceptance	All industrial emissions data has been collected. Candidate industrial sites have been identitifed. Developing time series analysis of emissions trends. All typical cost information has been collected. Pro forma model is close to finalized. Public outreach ongoing.
3.0	Geological analysis	Two sink example (candidate) locations have been identified and analysis are underway on both locations. Little information on candidate locations so requiring new research. Characterization of both candidate locations is completed. Mapping has been completed. Prelliminary sands analysis completed, analysis ongoing. Development of candidate sites report ongoing.
4.0	Geological capacity estimation	Static estimation of the capacity for candidate site has been conducted, dynamic analysis is ongoinig. Reservoir model has been developed. Sensitivities have been identified, and conducted, for storage capacities. Risk assessment analysis ongoing utilizing NRAP tools.
5.0	Baseline seismicity monitoring	Baseline seismicity work is ongoing.
6.0	Legal analysis	Legal analysis is ongoing.

Research Accomplishments: Industrial Sources (statewide)

Research Accomplishments: Industrial Sources (corridor)

Research Accomplishments: Top Industrial Sources (totals)

Large number of industrial and power plant source. Shell Norco refinery is the larges source that is in relatively close proximity to our candidate sinks (Bayou Sorrel and Paradis)

		2014 CO ₂			
Facility	City	Emissions (mt)	CO ₂ Purity	Facility Type	NAICS
Big Cajun 2	New Roads	10,624,054	Low	Power Plant	221112
Brame Energy Center	Lens	6,725,251	Low	Power Plant	221112
ExxonMobil Baton Rouge	Baton Rouge	6,245,428	Mostly Low	Refinery	324110
CF Industries Nitrogen	Donaldsonville	5,388,579	High	Petrochemical	325311
CITGO Lake Charles	Sulphur	4,766,415	Mostly Low	Refinery	324110
Marathon Petroleum Company	Garyville	3,930,022	Mostly Low	Refinery	324110
Norco Manufacturing Complex	Norco	3,527,991	Mostly Low	Refinery	324110
R S Nelson	Westlake	3,513,465	Low	Power Plant	221112
Dolet Hills Power Station	Mansfield	2,943,833	Low	Power Plant	221112
Saint Charles Operations - Dow	Taft	2,881,974	Mostly Low	Petrochemical	325199

Research Accomplishments: Top Industrial Sources (detail)

Norco's emissions are from combination of stationary combustion, chemical operations and refinery operations.

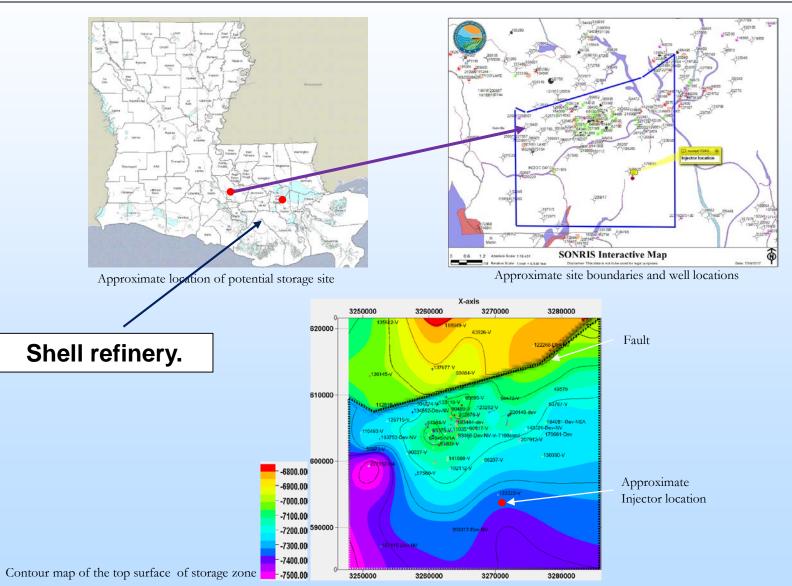
	CO ₂ Emissions (mt)											
Facility	Electricity Generation	General Stationary Combustion	Petrochemical Production	Oil Refining	Ammonia Manufacturing							
Big Cajun 2	10,624,054											
Brame Energy Center	6,725,251											
ExxonMobil Baton Rouge		4,434,125	26,892	1,784,412								
CF Industries Nitrogen		2,167,559			3,221,019							
CITGO Lake Charles		3,551,025		1,215,390								
Marathon Petroleum Company		2,813,182		1,116,840								
Norco Manufacturing Complex		2,339,431	41,165	1,147,395								
R S Nelson	3,488,406	25,059										
Dolet Hills Power Station	2,943,833											
Saint Charles Operations - Dow		2,618,538	263,436									
Total	23,781,544	17,948,919	331,493	5,264,037	3,221,019							
Approximate CO2 Purity (%) ¹	14-Dec	8	Variable	13-Mar	>95							

8

Research Accomplishments: Top Industrial Sources (trends)

Emissions have been decreasing over the past several years at most of the major facilities. Decreases of close to 19 percent for Norco.

Facility	2011	2012	2013	2014	Period percent change
Big Cajun 2	12,364,281	10,010,815	10,776,236	10,624,054	-14.1%
Brame Energy Center	7,041,800	5,344,280	7,628,309	6,725,251	-4.5%
ExxonMobil Baton Rouge	6,213,948	6,417,019	6,302,931	6,245,428	0.5%
CF Industries Nitrogen	5,326,035	5,201,108	5,312,449	5,388,579	1.2%
CITGO Lake Charles	4,486,368	4,346,027	4,561,286	4,766,415	6.2%
Marathon Petroleum Company	3,893,234	3,934,015	3,918,742	3,930,022	0.9%
Norco Manufacturing Complex	4,355,162	3,961,999	3,498,212	3,527,991	-19.0%
R S Nelson	4,961,983	4,559,708	4,350,949	3,513,465	-29.2%
Dolet Hills Power Station	5,021,895	5,151,445	3,350,478	2,943,833	-41.4%
Saint Charles Operations - Dow	1,932,566	2,069,376	2,794,800	2,881,974	49.1%
Total	55,597,272	50,995,792	52,494,392	50,547,012	-9.1%
Annual Percent Change		-8.3%	2.9%	-3.7%	
Compounded Percent Change				-2.4%	


9

Research Accomplishments: Industrial Sources: typical costs

Project	Year	Emission source	Plant Modification	Ca	apital Investment (Millions \$)	Capacity (mt/year)	Unit Cost (\$/mt	Other costs included	Project status
Air Products Port Arthur	2013	SMR	Yes	\$	431,000,000	1,000,000	\$ 431.00	Transport	Operating
Quest	2015	SMR	Yes		1,350,000,000	1,200,000	1,125.00	Total project costs	Operating
Alberta Carbon trunk Line	2017	Ammonia/refinery	Yes		1,200,000,000	2,000,000	600.00	Total project costs	Operating
Coffeyville	2013	Ammonia	Yes		250,000,000	800,000	312.50	Total project costs	Operating
Century Plant	2010	Ammonia	Yes		1,100,000,000	8,400,000	130.95		Operating
NETL Model	2013	Ammonia	Yes		143,570,880	458,400	313.20	None	Theoretical
NETL Model	2013	Ethylene oxide	Yes		35,903,545	121,501	295.50	None	Theoretical
NETL Model	2013	SMR	Yes		339,887,646	273,860	1,241.10	None	Theoretical
Lake Charles-Leucadia	2014	Coke-to-liquids	No	\$	435,000,000.00	4,500,000	\$ 96.67	12 mile transport	Cancelled
Average				\$	587,262,452	2,083,751	\$ 505.10		
Average of existing plant modifications				•	606,295,259	1,781,720	556.16		
Standard deviation					606,795,259	2,219,220	514.36		
Std deviation of existing plants				\$	523,372,955	2,739,752	\$ 410.13		

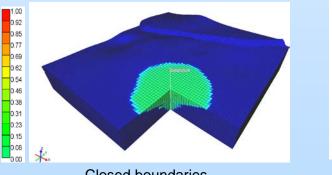
Costs are large.
 Retrofit costs are more expensive, but not by significant amount.
 Cost variation is very large.

Research Accomplishments: Bayou Sorrel Location

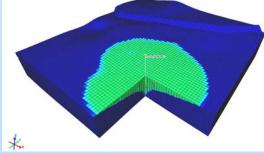
11

Research Accomplishments: Static and Dynamic Storage

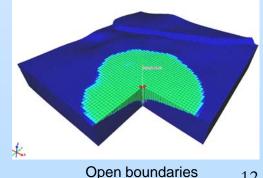
Static storage capacity


• 1,000 ft interval at an average depth of 7,100 ft

Median Depth (m)	Thickness (m)	Area (m2)	Density (Kg/m3)	Porosity Average	Storage Efficiency factor	Capacity (Mt)
2225	298.70	1.05E+08	759.00	0.28	0.02	133.11


Dynamic storage

Injection Rate (Mt/y)	Zone Boundary	Capacity (Mt)	Storage Efficiency factor
	Closed	93.50	0.014
2.64	Semi-closed	129.59	0.019
	Open	132.22	0.020

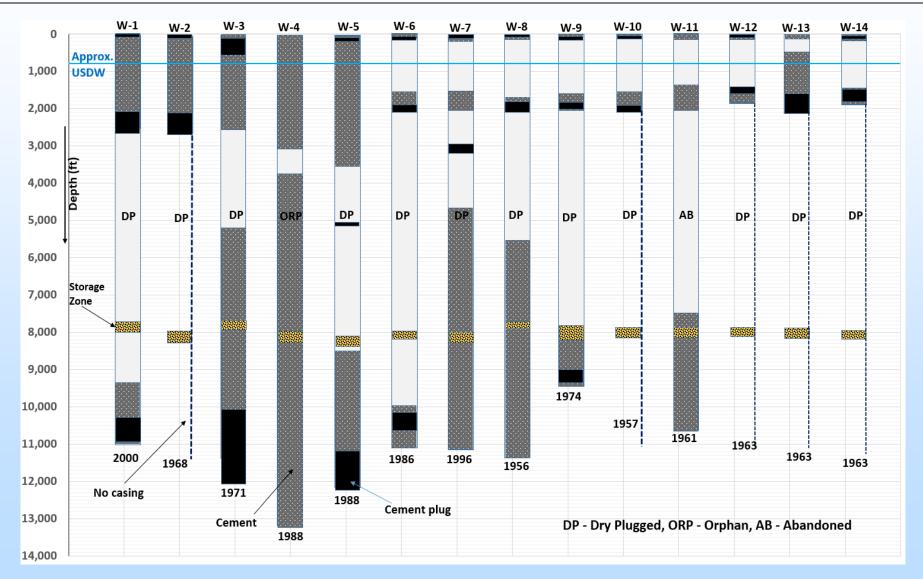

CO₂-Plume extent

Closed boundaries

Semi-closed boundaries

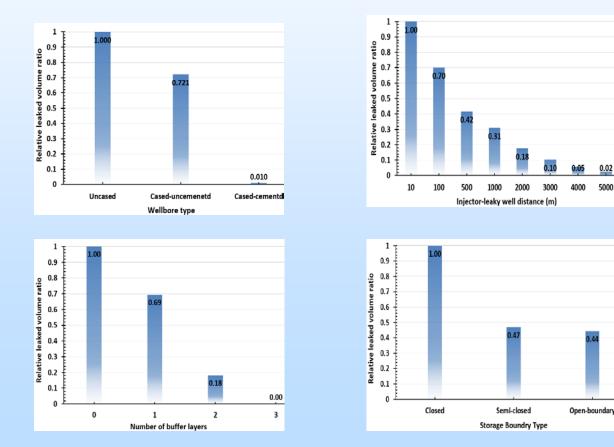
Research Accomplishments: Wellbore CO₂ Leakage Risk

Based on following four parameters


- Wellbore type (Cement Index)-CI
- Injector-Leaky well distance(Distance Index)-DI
- Overlaying buffer layers (segments) (Layer index)-LI
- Storage zone boundaries (Boundary Index)-BI

Wellbore Leakage Index (WLI) = $CI \times DI \times LI \times BI$

	Assumed ranges				
Variable category	Symbols	Min	Max		
Wellbore type (cased-cemented, cased-uncemented, uncased)	cement index (CI)	0	1		
Injector-leaky well distance	distance index (DI)	0	1		
Buffer layers	Layer index (LI)	0	1		
Boundary type (open, semi- closed, closed)	Boundary index (BI)	0	1		


Well Tiers	WLI range	Remarks
1	<=0.03	Wells with minor leakage risk
2	0.03-0.05	Wells with moderate leakage risk
3	>0.05<0.1	Wells with high leakage risk
4	>0.1	Wells with severe leakage risk

Research Accomplishments: Wellbore CO₂ Leakage Risk(cont.)

Research Accomplishments: Wellbore CO₂ Leakage Risk (cont.)

- Two wellbore leakage models available in NRAP-WLA toolset are used to model (Multi segment wellbore model (MWM) and Cemented wellbore model (CWM)
- cumulative leakage volume over 30 years for injection rate of 2.64 Mt/y

0.02

5000

Lessons Learned: Research Gaps & Difficulties

- Industrial capture cost information is limited.
- Some emissions data from high producing sources (ethylene oxide) are simply unavailable.
- A unified wellbore leakage model needs to be developed, that can work under a variety of operating conditions and wellbore types.
- Numerical modeling of storage zones with high degree of heterogeneity (shale-sand streaks) is problematic. Numerical schemes becomes unstable under some operating conditions.

Lessons Learned: Technical Disappointments

- The wellbore leakage models seems to provide inconsistent results under some circumstances and improvements are needed. These models may needs to be validated with experimental or field data.
- Industry discussions have resulted in considerable interest but very little action. Difficult to get industry engaged at this point, despite the fact that they see both the merit and geographic specific opportunity in Louisiana for these types of applications.
- Pipeline development is going to be a sticky widget. An issue filled with economic and financial risks. 17

Next Steps & Future Activities

- Discussions with stakeholders on concerns and barriers to industrial CCS projects.
- Initial runs on economic feasibility models and standardized costs on modeled location.
- Finalize capacity estimation and characterization.
- Continued baseline seismicity analysis.
- Continued risk assessment.
- Continued legal analysis.

Appendix

The following slides are provided as part of this Appendix:

- A. Program benefits
- B. Project overview & objectives
- C. Team participants
- D. Organizational chart
- E. Project timeline

Appendix: Program Benefits

- Defining high development probability industrial CO₂ sources and permanent underground sinks within the Louisiana industrial corridor.
- Defining the CO_2 transportation challenges associated with moving captured industrial CO_2 to a permanent underground storage location.
- Identifying the public perception and state legal/regulatory challenges of CO₂ capture and storage.
- Identifying the reasonable business case for CO₂ capture and storage in the Louisiana industrial corridor. "De-risking" future CO₂ capture and storage projects by provided credible, objective and independent information that can lead to a public/private joint demonstration.
- Establishment of baseline natural seismic activity with which to minimize potential future seismic activity.

Appendix: Project Overview & Objectives

• The objectives of the proposed project are to: 1) develop a multidisciplinary team of stakeholders with interest in carbon capture and storage in the Louisiana Chemical Corridor; 2) analyze the technical and economic feasibility of an integrated carbon capture and storage project that captures at least 50 million tons of CO₂ from one or more industrial sources, transports it via pipeline, and stores it in intrastate underground reservoirs; 3) provide a detailed sub-basinal evaluation of the potential for CO₂ storage in both depleted oil and gas fields and saline reservoirs in South Louisiana.

Appendix: Team Participants

David E. Dismukes, Economist Professor & Exe. Director, Center for Energy Studies & Department of Environmental Sciences

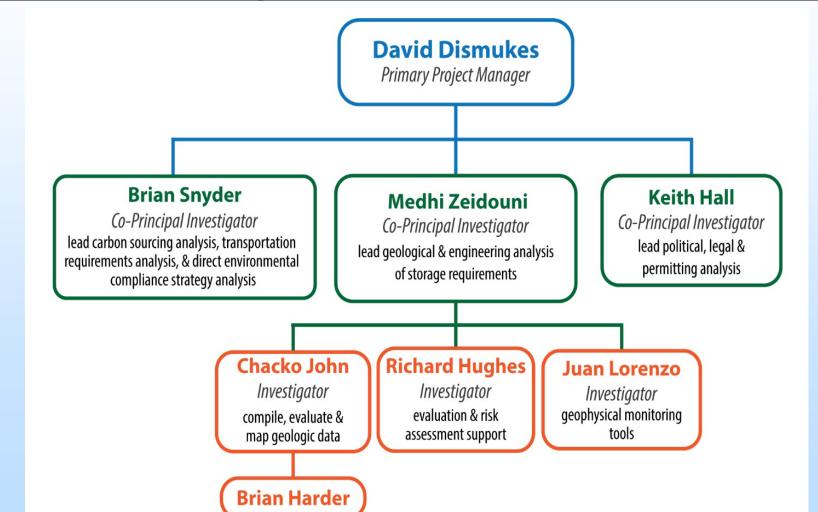
Brian Synder, Ecologist Asst. Professor Department of Environmental Sciences

Juan Lorenzo, Geologist Assc. Professor Department of Geology

Keith Hall, Attorney Assc. Professor & Director Laborde Energy Law Institute

Chacko John, State Geologist Director and Professor Louisiana Geological Survey (CES)

Mehdi Zeidouni, Petroleum Engineer Asst. Professor Department of Petroleum Engineering



Brian Harder, Petroleum Engineer Research Associate Louisiana Geological Survey (CES) (estimated recent photo)

Richard Hughes, Petroleum Engineer Professional-in-Residence Department of Petroleum Engineering 22

Appendix: Organization Chart

Appendix: Project Timeline (Gantt Chart)

	Project Months																	
Major Task/Milestone	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Phase 1: identification phase Screening and identification of candidate industrial sites Screening and identification of candidate storage sites Screening and identification of transportation requirements																		
Phase 2: Development issues identification Identification and development of CCS coordination team Stakeholder meetings on political challenges Stakeholder meetings on economic/financial challenges Stakeholder meetings on environmental challenges Stakeholder meetings on legal and property right challenges	٦	h																
Phase 3: Analysis Development of business case pro forma analysis Development of geological/sub-basinal analysis Development of analysis for capture requirements Development of evaluation, monitoring and verification approach Development of contractual requirements for storage Development of contractual requirements for transportation Development of risk management strategy Development of environmental compliance strategy																		
Formal implementation plan																		
Project management Data management																		

Appendix: Bibliography

- Several presentations have been given to date that are supported by this project's research.
- To date, no articles have been published from this research, but several are under development or have been submitted to journals and are under review.