Exceptional service in the national interest

Fundamental Understanding of Methane-Carbon Dioxide-Water (CH₄-CO₂-H₂O) Interactions in Shale Nanopores under Reservoir Conditions

Yifeng Wang, Yongliang Xiong, Louise Criscenti, Tuan Anh Ho, Philippe Weck, Edward Matteo, Jessica Kruichak

Sandia National Laboratories, Albuquerque, New Mexico

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgments

- DOE NETL for financial support
- Bruce Brown, Adam Tew, Joe Renk, Henry Stephen, Jared Ciferno, (NETL) for management support
- MSEEL for shale samples
- Mei Ding (LANL) for neutron scattering experiments

Shale gas production: A multi-scale problem

JCPT 46, 55 -61 (2007)

Macroscale: gas flow to the wellbore

Mesoscale: micro-fractures network

Microscale: nanopores

Nanoscale/Sub-nanoscale:

Gas diffusion from kerogen/clay porous structure to nanopores.

SPE 124253 (2009)

Nanopore confinement and emergent properties

Overall goal: (1) Obtain a fundamental understanding of CH_4 - CO_2 - H_2O (or other fluid component) interactions in shale nanopores under high-pressure and high temperature reservoir conditions, and (2) integrate this understanding into reservoir engineering for efficient resource recovery and subsurface carbon sequestration.

Capabilities for Nanogeochemical Studies at Sandia National Laboratories

Synthesis of nanoporous materials

Pore structure characterization

Pore structure characterization (FIB)

Isolation of kerogen from Mancos shale

sorption/desorption measurements

<u></u>	Contents has available of humandheast Chemical Geology
ALCOLULIA .	
Nanogeochemistry: Na control on geochemica	anostructures, emergent properties and their al reactions and mass transfers
Yifeng Wang Josh Indone Laboratory, 71 No. 188, Abu	everyor. MM ATTER 4775.304
ANTICLE INTO	*******C T
And the second s	By the property of the prop
	Molecular dynamic (MD) modeling • Binding energies of methane sortion • Diffusion rates
isposition & re as in place (GIP) as migration from r to fractures mulated volume as for secondary re	Iease • Effects of nanopore confinement on fluid thermodynamic properties • Effects of nanopore confinement on methane transport (microfluidics in shale)
	Upscaling Percolation theory Fractal representation Lattice Boltzmann modeling
	Predictive models Constitutive relationships Continuum models Reactive transport modeling

modeling

Density functional theory (DFT) modeling

TRAMANTO: Classical Density Functional Theory

Material preparation & characterization

- About 10 shale core samples obtained
 - Focus on Mancos, Marcellus & Woodford
- Pure kerogen isolated from Mancos, Woodford & Marcellus shale
- About 5 model materials synthesized or purchased
- Major material characterization completed (BET, SANS, FTIR)

Activated carbon	Surface area (m ² /g)	Average pore size (nm)	Total volume (cc/g)
INSUL	489	4.6	0.56
HYDRO-B	468	4.3	0.50
HYDRO-4000	750	4.1	0.76
12X20DC	538	4.9	0.66
MRX	557	5.4	0.76
S-51HF	640	4.8	0.77

Surface area and pore size of activated carbon materials

Synthesis of nanoporous materials

Gas sorption measurements

Table 1. Experimental measurements of sorption capacities and sorption rates for the model substances at 1 bar total pressure

Model Substances	Temp, °C	Gas Mixture, volume percent	Pressure, bar	Sorption Capacity, mg/g	Sorption Rate, mg/g min ⁻¹
DARCO activated carbon	25	85% CH ₄ + 15% CO ₂	1	28	0.68
	50	85% CH ₄ + 15% CO ₂	1	11	0.59
	75	85% CH ₄ + 15% CO ₂	1	9.0	0.31
	100	85% CH ₄ + 15% CO ₂	1	2.1	0.14
	125	85% CH ₄ + 15% CO ₂	1	1.8	0.10
Montmorillonite, <75 µm	25	85% CH ₄ + 15% CO ₂	1	2.8	4.7×10^{-2}
	50	85% CH ₄ + 15% CO ₂	1	0.30	9.6×10^{-3}
	75	85% CH ₄ + 15% CO ₂	1	0.19	6.7×10^{-3}
	100	85% CH ₄ + 15% CO ₂	1	0.18	5.1×10^{-3}
	125	85% CH ₄ + 15% CO ₂	1	0.12	3.3×10^{-3}
Crushed Shale	25	85% CH ₄ + 15% CO ₂	1	0.29	3.3×10^{-3}
	50	85% CH ₄ + 15% CO ₂	1	0.21	2.7×10^{-3}
	75	85% CH ₄ + 15% CO ₂	1	0.16	1.7×10^{-3}

Model Substances	Temp, °C	Gas Mixture, volume percent	Pressure, PSI	Sorption Capacity (mixture) mg/g	Sorption Rate, mg/g min ⁻¹
Illite, <75 mm	50	90% CH ₄ + 10% CO ₂	300	190	1.5

Kerogen

Over-mature kerogen molecules

Ho et al, Scientific Reports 28053

AAPG 96 (2012), 1099-1119

Density

Sample 1: 1.172g/cm³ Sample 2: 1.287g/cm³

Average :1.22±0.04 g/cm³ Experiment: 1.28±0.3g/cm³

Stankiewicz A, *et al.* (2015) Kerogen density revisited – lessons from the Duvernay Shale. *In: Paper URTeC* 2157904 at the Unconventional Resources Technology Conference, San Antonio, Texas, July 2015

Pore size distribution

Method: Bhattacharya S & Gubbins KE (2006) Langmuir 22:7726-7731 8

Methane sorption and extraction from kerogen

Ω

Pressure (atm)

Gas adsorption

Scenario 1: Pure CH₄ and pure CO₂

Scenario 2: 1:1 binary mixture CH₄ and CO₂

Pore specific effects on enhanced gas recovery

Pore specific effects on enhanced gas recovery

Assume that water thin films block the pore entrance.

 CO_2 invades through water and replaces CH_4 in the nanopore.

Model Molecular Structure of kerogen

Ungerer et al. (2015)

Figure 3: *Top*: Stuctures of the EFK, MEK, MarK and PY02 models (cubic box size of 50 × 50 × 50 Å³); *Bottom*: representative 3D-periodic portions of EFK, MEK, MarK and PY02 models used in the present DFT/DFPT calculations at the GGA/PBE level (simulations cells are indicated by solid lines). Color legend: grey, C; white, H; red, O.

Weck et al, Scientific Reports (2017)

Kerogen Models

Comparison of DFT results with measurements

Activated carbon: pH titration, surface functional groups, gas sorption and metal sorption and release

Activated carbon	Surface area (m ² /g)	Average pore size (nm)	Total volume (cc/g)
INSUL	489	4.6	0.56
HYDRO-B	468	4.3	0.50
HYDRO-4000	750	4.1	0.76
12X20DC	538	4.9	0.66
MRX	557	5.4	0.76
S-51HF	640	4.8	0.77

Surface area and pore size of activated carbon materials

Wang et al. (2007)

New kerogen models?

Table 1 Composition and structural parameters of the type II kerogen.

Property	Quantity	Immature		Oil window		Postmature	
		Analytical data	Model unit	Analytical data	Model unit	Analytical data	Model unit
Composition	H/C O/C	1.17 0.097	1.17 0.095	0.89	0.905 0.054	0.56 0.047	0.58 0.051
	N/C	0.029	0.024	0.021	0.021	0.021	0.023
	S/C	0.014	0.012	0.006	0.008	0.01	0.011
C group	Aromatic C from XPS(a) or NMR(b) (%)	40(a), 40(b)	41	54(a), 54(b)	58.7	72(a), 80(b)	79
	C atoms per aromatic cluster	12	11.4	19	20.3	20	19.9
	Fraction of attached aromatic C	0.43	0.46	0.30	0.28	0.24	0.28
	Protonated aromatic C (per 100 C)	13	14	17	14	28	25
O group	O in C-O per 100 C	5.0(a), 7 (b)	5.2	3.5(a), 5 (b)	3.7	4.7(a), 2 (b)	5.1
	O in carboxylic groups (-COOH) per 100 C	1.3	1.6	0.7	0.83	0	0
	O in carbonyl groups (>C=O) per 100 C	3.4	2.8	0.8	0.83	0	0
N groups	Pyrrolic (mol% of N)	52	66	65	60	62	75
	Pyridinic (mol% of N)	27	17	18	40	15	25
	Quaternary (mol% of N)	18	17	17	0	23	0
S Groups	Aromatic S (mol% of S) Aliphatic S (mol% of S)	46 54	67 33	54 46	50 50	80 20	100

⁴ The analytical data corresponds to the experimental work of Kelemen et al. [24]. The model data corresponds to the molecular models of kerogen (type IIA, IIC and IID) detailed in the paper by Ungerer et al. [41].

New structural models

Bousige et al. (2016)

Frequency (cm⁻¹)

Nanoconfinement & emergent transport properties

Nanoconfinement & emergent transport properties: isotope fractionation

- Chemical species confined in nanopores behave differently from those in a bulk system.
- Interaction of chemical species with pore surfaces is much enhanced due to a high surface/fluid volume ratio.
- Nano-confinement also manifests the discrete nature of fluid molecules in transport, therefore enhancing mass-dependent isotope fractionations.
- All these effects combined lead to a distinct set of tracer signatures that may not be observed in a conventional hydrocarbon reservoir or highly permeable groundwater aquifer system.

Isotope fractionation of water by ultrafiltration across a compacted clay membrane (Coplen and Hanshaw, 1973)

Waters extracted from Opallinus Clay at Benken (Switzerland) (Mazurek et al., 2009)

Chaotic behavior of gas migration in compacted clay

FORGE Report D4.17 (Harrington, 2013)

Bubble migration under a pressure gradient

Delay logistic equation

$$\frac{dP}{dt} = \lambda_1 \left(1 - \frac{P}{K} \right) \int_{-\infty}^{t} G(t - s) p(s) ds$$
$$\frac{dP}{dt} = \lambda_1 \left(1 - \frac{P}{K} \right) \int_{-\infty}^{t} \alpha e^{-\alpha(t-s)} p(s) ds$$

$$\lambda_1 = \frac{\left(k_u^0 P_u + k_d^0 P_d\right) RT}{V} \qquad \lambda_2 = \frac{\left(k_u^0 + k_d^0\right) RT}{V} \qquad K = \frac{\lambda_1}{\lambda_2}$$

Logistic map

Chaotic behavior of well production?

https://www.shaletec.com/files/Production-below-decline-curve.png

Future work

- Performing additional high pressure and high temperature sorption measurements on crushed shale samples.
- Perform sorption measurements more on multicomponent systems to clarify the interactions among different components (CH₄-CO₂-H₂O).
- Develop new structural models for kerogen that correctly account for both atom correlations and functional group distributions.
- Understand the effects of surface functional groups on gas sorption and release in kerogen.
- Perform MD (or MC) simulations for understanding CH₄-CO₂-H₂O interactions in nanoporous clay matrix.
- Extend the research to include other hydrocarbon components.
- Develop a nanofluidic model for gas transport and isotope fractionation in shale.
- Based on the existing experimental and modeling results to formulate new gas disposition and release model for well-borehole production.
- Collaboration on kerogen study: Schlumberger, MIT