U.S. DOE's National Risk Assessment Partnership:

Assessing Carbon Storage Risk to Support Decision Making Amidst Uncertainty

Grant S. Bromhal Robert Dilmore August 1, 2017

National Risk Assessment Partnership

Dynamically addressing risks of fluid migration and ground motion amidst geologic uncertainty

Technical Team

Stakeholder Group

Managing Leakage Risk

- Aliso Canyon Incident
- Leak began at Aliso Canyon October 23, 2015
- On February 17, 2016, leak was permanently plugged using relief well after failed top kills
- ~90,000 tonnes of gas leaked in four months
- ~4 TCF (~1.1 Gtonnes) of gas storage in US
- Number of UGS well is ~17,500
- Well ages range from 1 to more than 125 years
 - ~80% completed before 1980
- Significant differences in regulatory regimes between UGS and GCS

Ensuring Safe and Reliable Underground Natural Gas Storage

Final Report of the Interagency Task Force on Natural Gas Storage Safety

October 2016

Comparison between CCS and UGS

Geologic Carbon Storage

- Storage in oil and gas fields, saline formations
- Requires new wells (Class VI) for injection
- Full well cemented (Class VI)
- Comprehensive well integrity and site monitoring requirements
- Non-flammable, denser than air
- No odorant used, maybe tracer

Underground Gas Storage

- Storage in oil and gas fields, saline formations, and salt domes
- Repurposes old oil and gas wells for injection and production
- Long well intervals without cement
- Flammable, lighter than air
- Use of odorant
- Some production through tubing and casing
- >15,000 wells at >400 facilities (US)
- ~4 TCF stored in U.S., much produced annually

May have active oil production in same fields (area) as GCS and UGS

4

From Bromhal and Freifeld, 2017

Managing Induced Seismicity Risk

- In Oklahoma, 2015:
- 835 million bbl brine/yr
- Equivalent to ~90 Mtonnes CO₂
- 1 "wedge" of CCS:
 - 25 Gtonnes over 25 years
- Only a very small percentage of wells induce felt seismic activity, implying the risks can be managed

NRAP Technical Team

NRAP Phase I Tools

..... BERKELEY LAB

EST.1943

Pacific Northwest NATIONAL LABORATORY

Application and Validation of Tools (Diana Bacon)

- Demonstrated protocol for applying the Aquifer Impact Model to the Illinois Basin – Decatur Site
- Developed model to help plan the Containment and Monitoring Institute (CaMI) controlled leakage experiment
- Used field and laboratory data to better understand the relationship between rock elastic properties and induced seismicity
- Battelle's well integrity database is being used with the Wellbore Leakage Analysis Tool (WLAT) and DREAM tools to demonstrate design of practical monitoring strategies
- Developed risk-based AOR method using the NRAP-IAM-CS integrated assessment model
- Developed Kimberlina Site Data set for Testing of Monitoring Tools/Approaches

Modeling of monitoring capabilities (Erika Gasperikova)

Designing better monitoring networks

ECHNOLOGY

ABORATORY

BERKELEY

10 10

Pacific Northwest

NATIONAL LABORATORY

os Alamos

EST 1943

New IAM capabilities (Elizabeth Keating)

Leakage scenario

Risk assessment update using monitoring data

New ROMs focus on predicting above zone monitoring interval (AZMI) behavior

Pacific Northwest

NATIONAL LABORATORY

os Alamos

EST 1943

IAM developed for risk management

- Seal integrity
- Wellbore integrity
- Leak mitigation
- Integrated risk assessment and risk management

ECHNOLOGY

ABORATORY

BERKELEY L

12

Pacific Northwest

NATIONAL LABORATORY

os Alamos

NATIONAL LABORATORY

EST 1943

Advances in Induced Seismicity (Josh White)

- Real-time hazard forecasting
- Active seismicity management
- Probabilistic seismic risk assessment
- Fault leakage
- Seismicity management protocols

Generating stress polygon to use for probabilistic assessment of fault reactivation potential

EST 1943

Thank You!

NRAP Talks and Tool User Workshop

- Tuesday, Aug. 1, 1:40pm
 - Induced Seismicity Risk; Josh White, LLNL
- Wednesday, Aug. 2, 5:20pm
 - Application of Risk Assessment Tools and Methodologies to Synthetic and Field Data; Diana Bacon, PNNL
- Thursday, Aug. 3, 2:05pm
 - Strategic Monitoring for Uncertainty Reduction; Erika Gasperikova, LBNL
- Thursday, Aug. 3, 2:25pm
 - Containment Assurance; Elizabeth Keating, LANL
- Thursday, Aug. 3, 2:45pm
 - Wellbore Integrity; Nicolas Huerta, NETL
- Thursday, Aug. 3, 3:30-6:00pm
 - NRAP Tool User Workshop

www.edx.netl.doe.gov/nrap t: NRAP@netl.doe.gov

Thank You! Questions and Comments?

