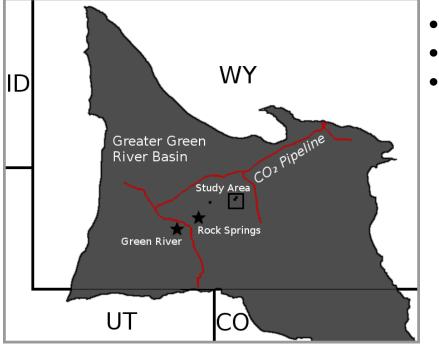
Integrated Pre-Feasibility Study of a Commercial-Scale CCS Project in Formations of the Rock Springs Uplift, Wyoming

Project Number DE-FE0029302

J. Fred McLaughlin and Kipp Coddington Carbon Management Institute, University of Wyoming

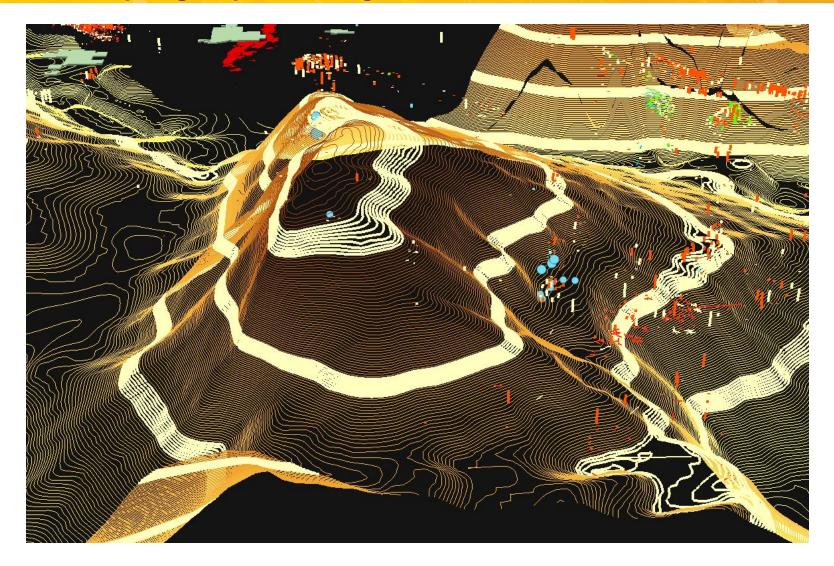
> U.S. Department of Energy National Energy Technology Laboratory DE-FOA0001584 Update Meeting August 1st, 2017

Outline

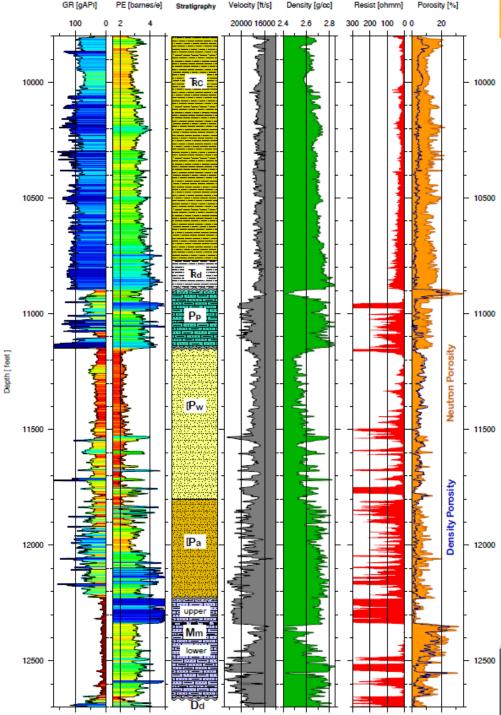

- Background
- Technical Status Phase 1
- Accomplishments
- Lesson Learned

- Summary
- Appendix
 - o Benefit to the Program
 - Project Overview
 - o Organization Chart
 - o Bibliography

• Synergy Opportunities RESOURCES


The Rock Springs Uplift, Background

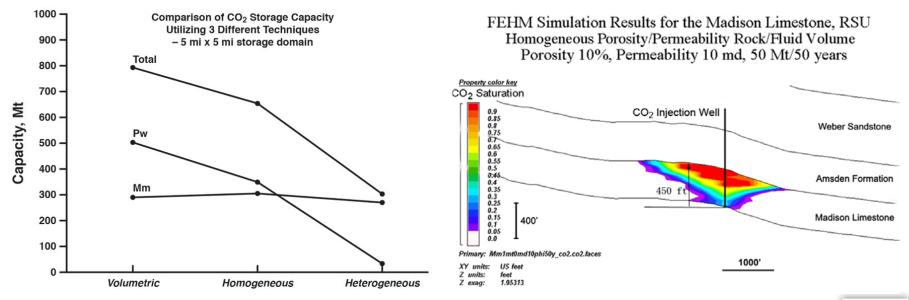
- Site of previous studies
- Past studies evaluated deepest reservoirs
- Suggested capture from the Jim Bridger Power Station (largest CO₂ emitter in Wyoming at ~18 Mt/yr)


Stylized W-E Geologic Cross Section through study site Baxter Basin Great Divide and Green River West East RSU 1 Washakie Basins Structural Basin 0 (sea level) Baxter Shale -5,000 (-1,524) Mowry / Thermopolis Depth, -10,000 (-3,048) Gallatin Form -15,000 (-4,572) Cloverly -20,000 (-6,096) Precambrian -25,000 (-7,620) 25 50 100 km 50

The Rock Springs Uplift, Background

WyRiM (Wyoming resource integration model) developed by EORI

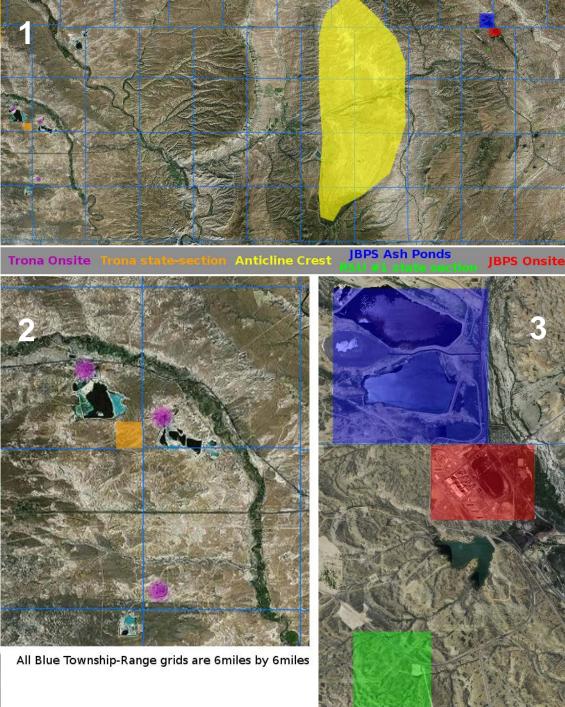
The Rock Springs Uplift, Background


Assessment of Paleozoic reservoirs and seals

RCES

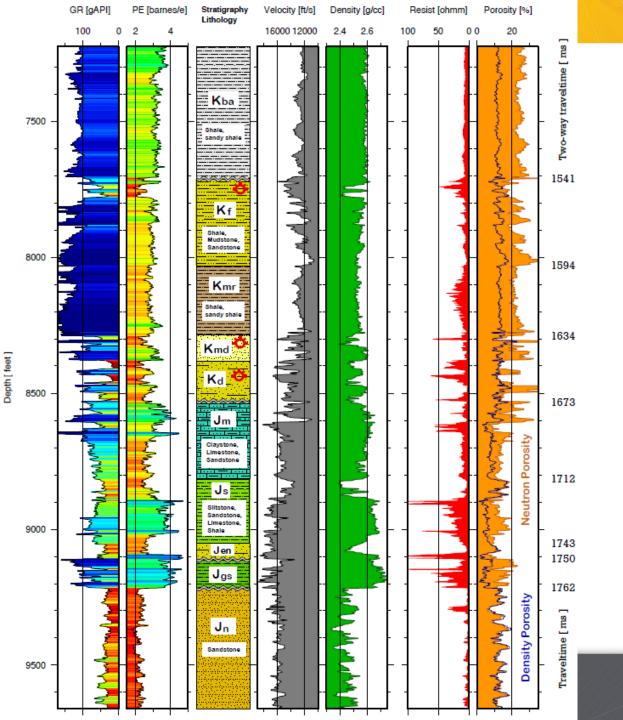
Previous studies: Summary

- Mind the geology
- Determine a pressure management strategy
- Seals are not as robust relative to HCs
- Volumetrically feasible (25MT modeled in the Madison)
- Commercial-scale characterization strategy successfully developed/risks determined
- Deep storage could be cost prohibitive



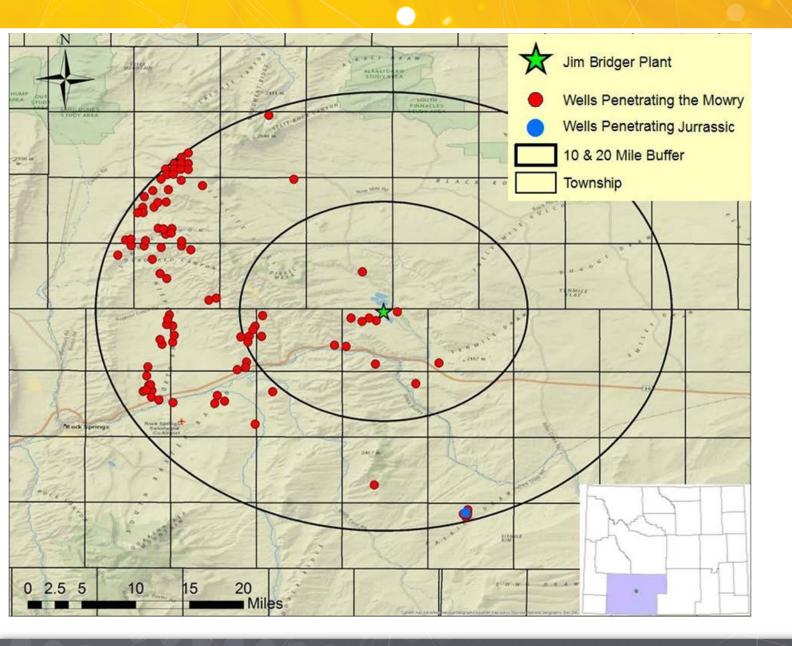
Technical Status

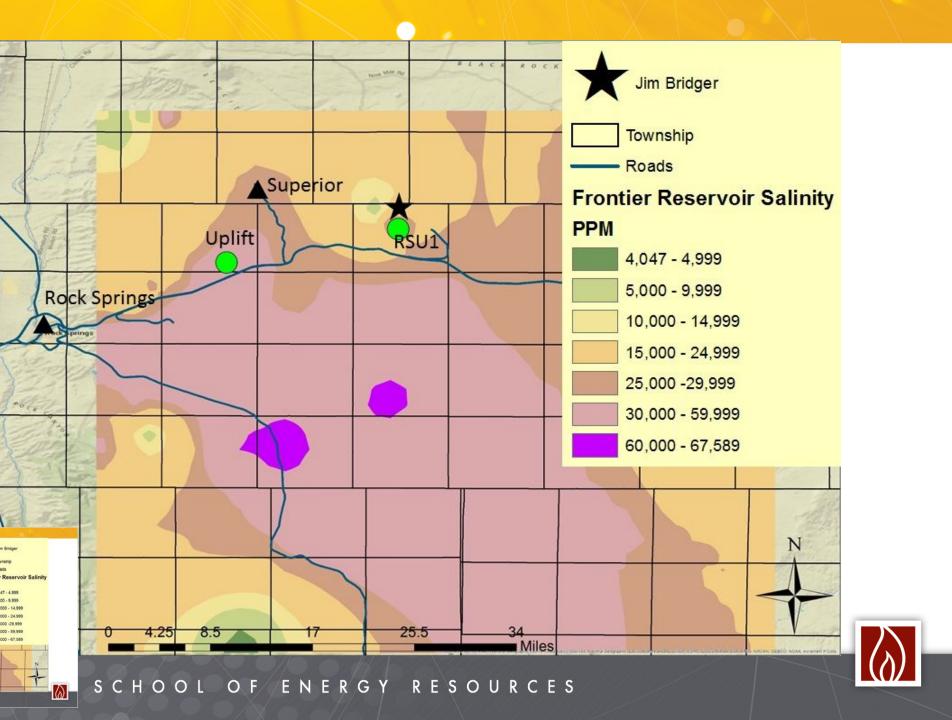
- Task 1: Project Management & Planning
- Task 2: CCS Coordination Team
- Task 3: Scenario Technical and Non-technical Considerations
- Task 4: Regional & Stakeholder Analysis
- Task 5: Technical Sub-Basinal Storage & CO₂ Source Evaluation
- Task 6: NRAP Modeling & Validation

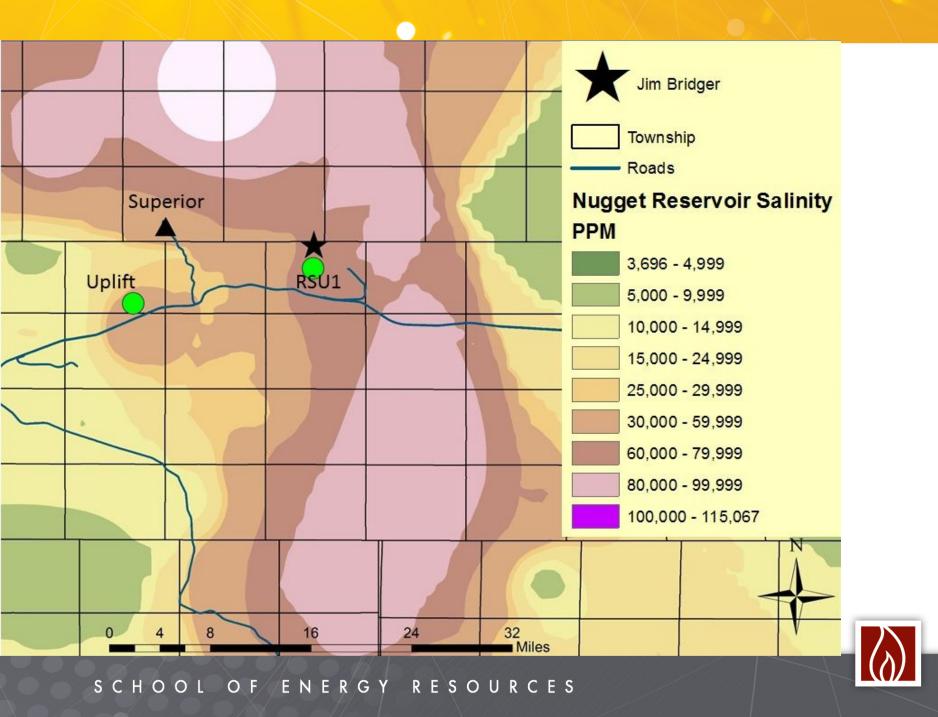

Scenarios Overview

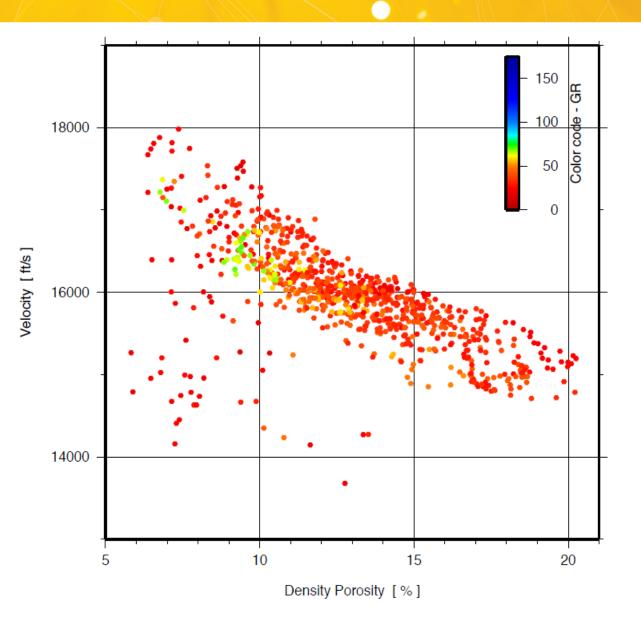
- Map view of the entirety of the study site with shaded source and potential injection locations
- 2. Area adjacent to trona plants
- 3. Area adjacent to the Jim Bridger power plant

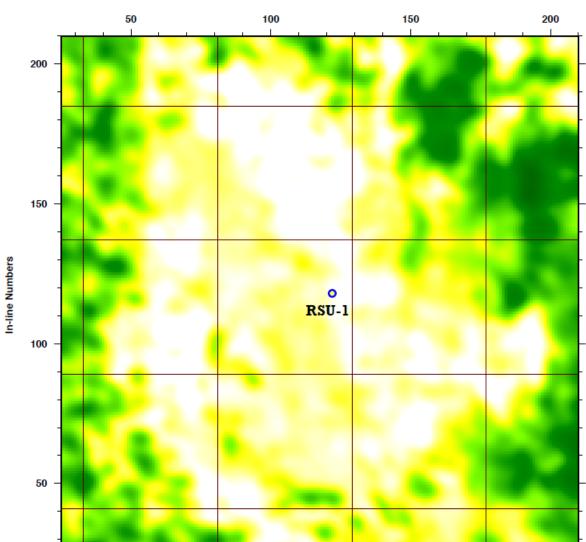
Factor	Source	Transport	Storage	
Geologic Factors				
Potential for stacked storage	0	0	+	
Compartmentalization of reservoir	0	0	+/-	
Sufficiently high porosity in reservoir	0	0	+	
High permeability in reservoir	0	0	+/-	
Available subsurface data set (logs and seismic)	0	0	+	
Faulting	0	-	+/-	
Continuous seal with sufficiently low porosity and permeability	0	0	+	
Reservoir depth between ~3000 ft and ~13000 ft	0	0	+	
High salinity storage formations	0	0	+	
Cementation in reservoir	0	0	-	
Reservoir and seal heterogeneity	0	0	-	
Confirmed valuable minerals	0	0	-	
Developed Oil and Gas reservoirs	0	-	+	
Environmental Factors				
Protected species or their critical habitat	-	-	0	
Presence of a waterbody	-	-	0	
Protected areas	0	-	0	
Partnership and Outreach Factors				
Synergy with CO2 producers	+	+	+	
Negative public perception	-	-	-	
Engineering Factors				
Source of over 2Mtonnes/year	+	-	-	
Large distance between Source and Storage sites	0	-	-	
High Initial CO2 Purity	+	+	+	
Traditional Source	+	0	0	
Competent and dipping rock strata	0	-	-	
Legal Factors				
Federal (BLM) Ownership of Surface and Mineral Interests	0	+/-	+/-	
Few Private Landowners	0	+/-	+/-	
State Land Sections	0	0	0	
State, Federal, and Local Laws and Regulations	-	+/-	0	
Sage Grouse habitat	0	-	-	
Economic Factors				
Increasing Distance to Injection Site	-	-	0	
Single Point Source of CO2 versus Multiple Source Plants	+/-	-	0	
Depth of Injection Site	0	0	+/-	
High Oil Prices	+	+	+	
45Q or Other Tax Incentives	+	0	0	
	ALA / Y / 7	/ X/////		///

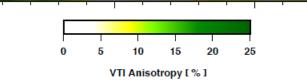



Investigative targets: Mesozoic sandstones and associated seals

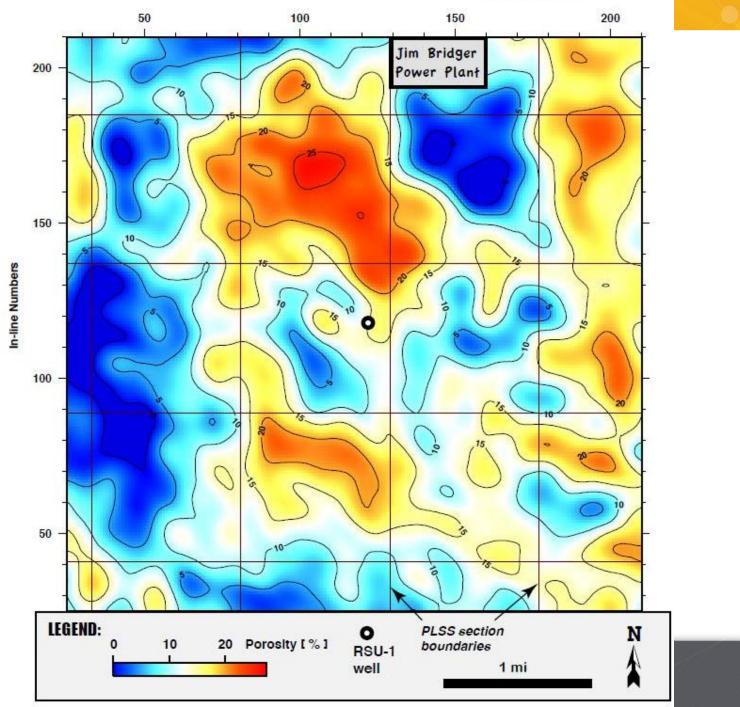

- Relatively thick
- Laterally extensive
- Holds natural gas



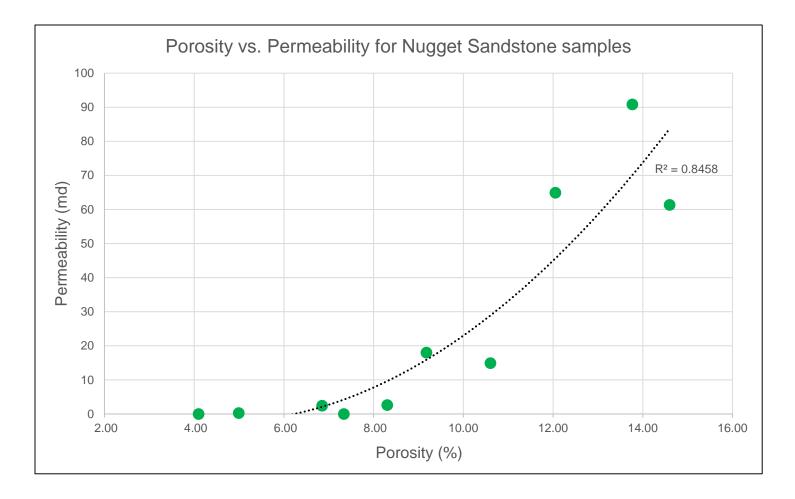




 $\langle \rangle$



 $\langle \rangle$


SCHOOL OF ENERGY RESOURCES

Cross-line Numbers

Cross-line Numbers

Policy, Legal & Business Considerations

CCS Environment and Plan to Address Feasibility:

Commitment level and anticipated level of investment for all partners

- Letters of commitment, including from key WY Governor & state agencies
- Phase 2 letter of commitment obtained from key committee of jurisdiction

Strategy for securing any necessary pore space rights

- Function of federal, state or private lands
- Wyoming has a pore space statute
- Initial legal/strategy analysis concluded July 31, 2017

Role of state incentives/policies toward project economics and public acceptance

- Long-standing support of CCS/CCUS
- Wyoming has robust CCS/CCUS statutes
- Wyoming has favorable climate for CCUS infrastructure projects, including with state/Federal governments and private sector
- Existing infrastructure (e.g., pipelines) and projects (WY-CUSP, ITC, etc.)
- We have views regarding status of federal policy
- Economic model nearing completion; sales to EOR expected to play a non-trivial role; also evaluating outof-state electricity sales
- Outreach plan to be completed this month

Strategy for securing rights-of-way for any necessary CO₂ pipeline infrastructure

- Wyoming has existing pipelines + expansion planned, including ROWs on federal lands (WPCI)
- Initial legal/strategy analysis concluded July 31, 2017

Policy, Legal & Business Considerations

CCS Environment and Plan to Address Feasibility (cont'd):

Plan for assumption of long-term liability for stored CO_2

- Team includes experts in private sector risk CCS management solutions, including potential assess to financial/insurance markets
- Liability analysis should be completed shortly

Wyoming CCS/CCUS Regulatory Regime

Wyoming law:

- Specifies who owns the pore space (Wyo. Stat. § 34-1-152 (2016))
- Establishes permitting procedures and requirements for CCS sites, including permits for time-limited research (Wyo. Stat. § 35-11-313 (2016))
- Provides a mechanism for post-closure MRV via a trust fund approach (Wyo. Stat. § 35-11-318 (2016))
- Provides a mechanism for unitization of storage interests (Wyo. Stat. § 35-11-315 (2016))
- Specifies that the injector, not the owner of pore space, is generally liable (Wyo. Stat. § 34-1-513 (2016))
- Clarifies that vis-à-vis storage rights, production rights are dominant but cannot interfere with storage (Wyo. Stat. § 30-5-501 (2016))
- Provides a certification procedure for CO₂ incidentally stored during EOR (Wyo. Stat. § 30-5-502 (2016))

Accomplishments to date

Completed deliverables and/or milestones

Updated Project Management Plan

Completed Factor Analysis

Final Scenario Assessment

Full Legal Assessment

Forthcoming deliverables and/or milestones

Economic/business model

Environmental analysis

Outreach plan

On-going technical analysis

Lessons Learned/Research Gaps

- Diversification of team member expertise key to success prefeasibility objectives, but necessitated a focused management plan
- More diverse storage reservoir options in western Wyoming with lesser economic penalties
- Introduction of private funds for carbon business case
- Capture?

Synergy Opportunities

- Collaboration with other CarbonSAFE teams have helped refine methodologies/identify key factors
- Wyoming has helped provide legal framework
- Business model(s) development with other teams
- Pathway to robust industry and regulatory partnerships

Summary

- Wyoming has an uniquely favorable environment for projects of this type relative to its geology, existing pipeline & other infrastructure, supportive law/policy/regulations and supportive private sector & governmental stakeholders
- The Jim Bridger Plant may possibly present potential additional opportunities for potential revenues based upon its geographic location (EOR) and where it sells electricity. Also, large source is a benefit to business models both "green" electrons and EOR.
- If large-scale commercially-based integrated CCS is going to start anywhere, we believe the RSU site is an ideal venue to plant that flag

Appendix

Benefit to the DOE CCUS Program

- Identify suitable saline aquifers, capable of sequestering 50 Mt (commercialscale) of CO₂, adjacent to one of the largest coal-fired plants in the Rocky Mountain region
- Ensure storage permanence relative to seal/reservoir pairs
- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness utilizing reservoir management techniques

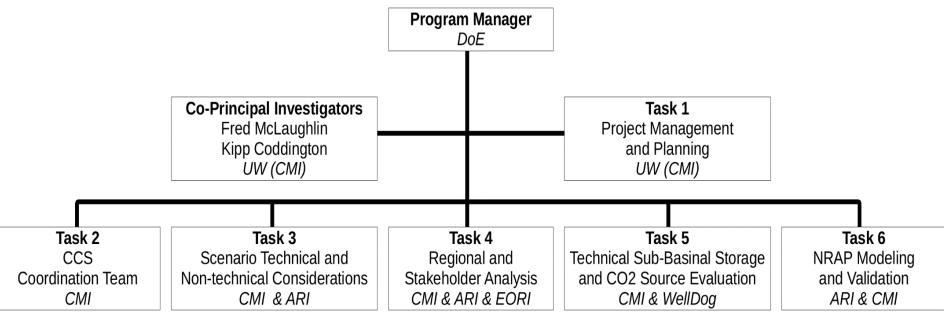
Additional Benefits

- Evaluation of the economics associated with coupling commercial-scale coalbased CCS with low-carbon energy sales
- Evaluation of the economics of coupling coal-sourced capture within existing EOR infrastructure
- Technical and economic evaluation of large-source capture and storage (~18Mt/year); 50 Mt before 25 years?

Phase 1 Project Overview: Goals and Objectives

1. Evaluate the potential of multi-reservoir injection near the Jim Bridger Plant, one of the largest sources of anthropogenic CO₂ in the Rocky Mountain region, with a focus on evaluating younger strata along the Rock Springs Uplift (RSU)

2. Evaluate coupled economic strategies that utilize the existing CO₂ pipeline network (Wyoming Pipeline Corridor Initiative) in the immediate vicinity of the RSU to provide a broader array of CO₂ emitters and sinks


3. Expand the Phase 1 CCS Coordination Team (CCT) as needed

4.Consider the addition of: (1) additional regional CO₂ sources, including trona production facilities; (2) the use of CO₂ for enhanced oil recovery for economic purposes while still ensuring satisfaction of the Project's saline storage requirements, and (3) and the impact of low-carbon energy sales to populations in the west

5. Evaluate the State's current legal and policy framework in relation to program goals

Organization Chart/ Communication Plan

- Communications plan
 - Bi-weekly phone/web meetings
 - Team kick-off meeting (completed)
 - Technical site visit
 - Internal interdisciplinary team review sessions

University of Wyoming, EORI, KKR, ARI, Welldog, and PacifiCorp

The storage complex feasibility should address the following challenges at a minimum

Assess Public Outreach Needs

Goals and Activities

Outreach Team

Stakeholders and Social Climate

Public Outreach Program

Storage Complex Model Data

Build and Calibrate Models

Test Models

Compare Outputs

Draft Site Development Plan

Detailed Characterization Phase

Development Phase

Analyze Regulatory Issues

Applicable Regulations UIC Permit Planning

Characterize Storage Complex Subsurface

Geological and Geophysical

Geochemical

Geomechanical

Hydrogeological

Appendix: Selected Bibliography

Deng, H., Stauffer, P.H., Dai, Z., Jiao, Z. and Surdam, R.C., 2012. Simulation of industrial-scale CO 2 storage: Multiscale heterogeneity and its impacts on storage capacity, injectivity and leakage. International Journal of Greenhouse Gas Control, 10, pp.397-418.

McLaughlin, J.F., Ganshin, Y., Quillinan, S., Bentley, R. and Jiao, Z., 2014. Mitigating Risks Associated with Long-term CCS: Characterizing the Geologic History and Heterogeneity of Sealing Strata. *Energy Procedia*, *63*, pp.4999-5009.

Pafeng, J., Mallick, S. and Sharma, H., 2016. Prestack waveform inversion of three-dimensional seismic data—An example from the Rock Springs Uplift, Wyoming, USA. Geophysics, 82(1), pp.B1-B12.

Stauffer, P.H., Surdam, R.C., Jiao, Z., Miller, T.A. and Bentley, R.D., 2009. Combining geologic data and numerical modeling to improve estimates of the CO2 sequestration potential of the Rock Springs Uplift, Wyoming. *Energy Procedia*, *1*(1), pp.2717-2724.

Stauffer, P.H., Pawar, R.J., Surdam, R.C., Jiao, Z., Deng, H., Lettelier, B.C., Viswanathan, H.S., Sanzo, D.L. and Keating, G.N., 2011. Application of the CO2-PENS risk analysis tool to the Rock Springs Uplift, Wyoming. *Energy Procedia*, *4*, pp.4084-4091.

Surdam, R.C. ed., 2013. *Geological CO2 storage characterization: The key to deploying clean fossil energy technology.* Springer Science & Business Media.

Tchuindjang, J.P., Mallick, S. and Sharma, H., 2016. Reservoir characterization using prestack waveform inversion. In SEG Technical Program Expanded Abstracts 2016 (pp. 3597-3602). Society of Exploration Geophysicists.

