
Integrated CCS for Kansas (ICKan)

Project Number FE0029474

Kansas Geological Survey

University of Kansas

Martin Dubois

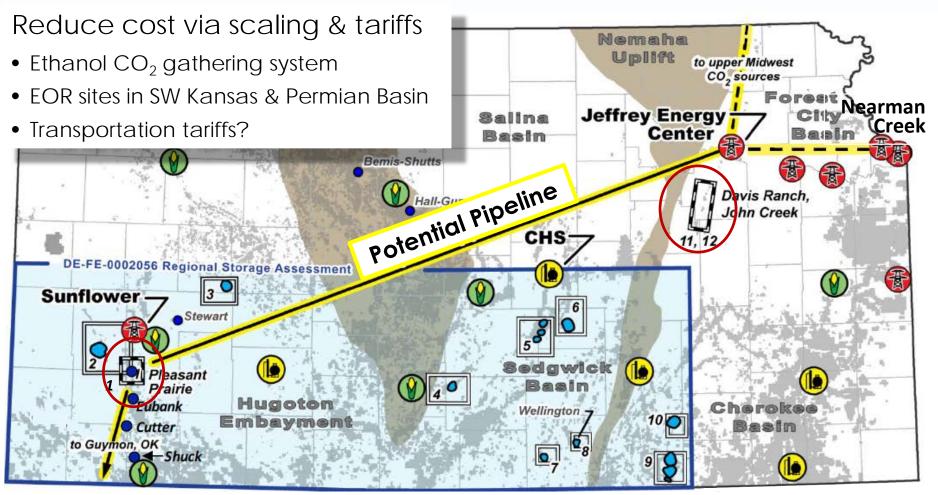
Improved Hydrocarbon Recovery, LLC

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

Presentation Outline

- Technical Status
 - Project Overview
 - Goals & Objectives
 - CCS Team & Participants
 - Sub-basinal Evaluations
 - CO₂ Sources & Transportation Assessments
 - Legal, Regulatory, and Public Policy
- Accomplishments to Date
- Lessons Learned & Synergy Opportunities
- Project Summary


Technical Status Project Overview: Goal & Objectives

- Identify and address major technical and nontechnical challenges of implementing CO₂ capture and transport and establishing secure geologic storage for CO₂ in Kansas
- Evaluate and develop a plan and strategy to address the challenges and opportunities for commercial-scale CCS in Kansas

Technical Status Project Overview: Base Case Scenario

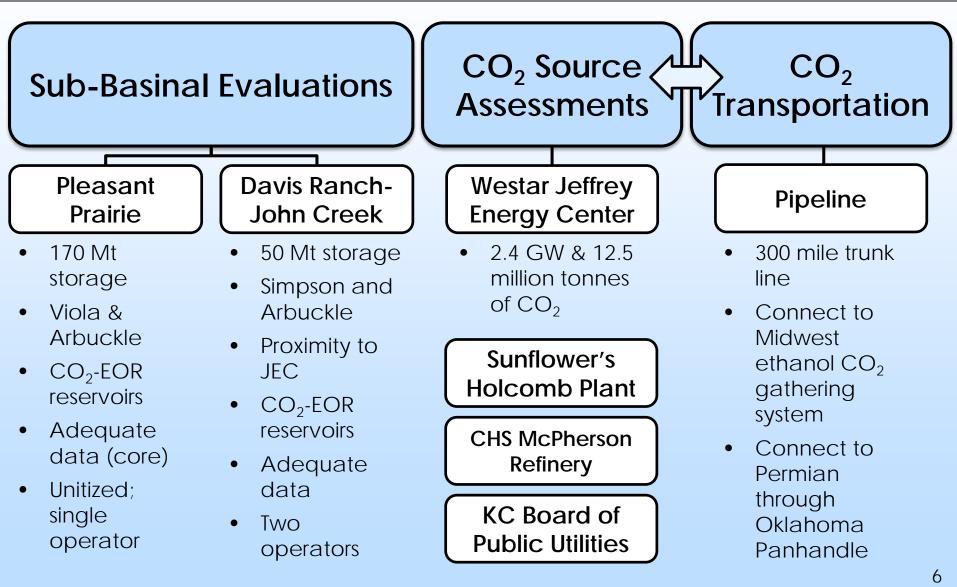
- Capture 50 million tonnes CO₂ from one of three Jeffrey Energy Center's 800 MWe plants over a 20 year period (2.5Mt/yr)
- Compress CO₂ and transport 300 miles to Pleasant Prairie Field in SW Kansas.
 - Alternative: 50 miles to Davis Ranch and John Creek Fields.
- Inject and permanently store 50 million tonnes CO₂ in the Viola Formation and Arbuckle Group

Jeffrey to SW Kansas

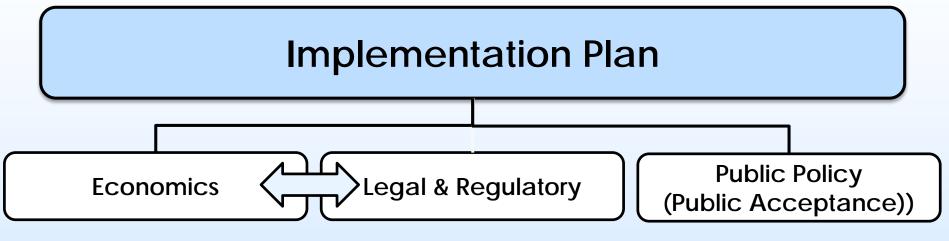
coal-fired power plant

petroleum refinery or manufacturing plant (cement & fertilizer)

ethanol plant



proposed geologic storage complex geologic storage complex study area and closure


oil and gas fields

index map (KS)

Technical Evaluations

Non-Technical Evaluations

- Capture & transportation economic feasibility (with or w/o ethanol component)
- Financial backing
- Financial assurance under Class VI
- State incentives
- Federal tax policy

- Pore space property rights including force unitization
- CO₂ ownership & liability
- MVA requirements under UIC Class VI
- Varying stakeholder interests
- Right-of-ways
- Utility rate-payer obligations

- Identify stakeholders
- Foster relationships
- Public perception
- Political challenges
- Injection-induced seismicity

Phase 1 Research Team

18 team members, 4 subcontractors and KGS staff

Project Management & Coordination, Geological Characterization

Kansas Geological Survey University of Kansas Lawrence, KS

Tandis Bidgoli, PI, Assistant Scientist Lynn Watney, Senior Scientific Fellow Eugene Holubnyak, Research Scientist K. David Newell, Associate Scientist John Doveton, Senior Scientific Fellow Susan Stover, Outreach Manager Mina FazelAlavi, Engineering Research Asst. John Victorine, Research Asst., Programming Jennifer Hollenbah - CO2 Programs Manager

Improved Hydrocarbon Recovery, LLC Lawrence, KS Martin Dubois, Joint-PI, Project Manager

CO2 Source Assessments, Capture & Transportation, Economic Feasibility

Linde Group (Americas Division)

Houston, TX

Krish Krishnamurthy, Head of Group R&D Kevin Watts, Dir. O&G Business Development

Energy, Environmental, Regulatory, & Business Law & Contracts

Depew Gillen Rathbun & McInteer, LC

Wichita, KS Christopher Steincamp, Attorney at Law Joseph Schremmer - Attorney at Law

Policy Analysis, Public Outreach & Acceptance

Great Plains Institute

Minneapolis, MN

Brendan Jordan, Vice President Brad Crabtree, V.P. Fossil Energy Jennifer Christensen, Senior Associate Dane McFarlane, Senior Research Analysist

Industry Partners

Four CO₂ Sources

CO2 Sources

Westar Energy

Brad Loveless, Exec. Director Environ. Services Dan Wilkus, Director - Air Programs Mark Gettys, Business Manager

Kansas City Board of Public Utilities

Ingrid Seltzer, Director of Environmental Services

Sunflower Electric Power Corporation

Clare Gustin, V.P. Member Services & Ext. Affairs

CHS, Inc. (McPherson Refinery)

Richard K. Leicht, Vice President of Refining Rick Johnson, Vice President of Refining

Regulatory

Kansas Department of Health & Environment

Division of Environment

John W. Mitchell, Director

Bureau of Air

John W. Mitchell, Director

Five Oil & Gas Companies

Kansas Oil & Gas Operators

Blake Production Company, Inc.

(Davis Ranch and John Creek fields)

Austin Vernon, Vice President

Knighton Oil Company, Inc. (John Creek Field)

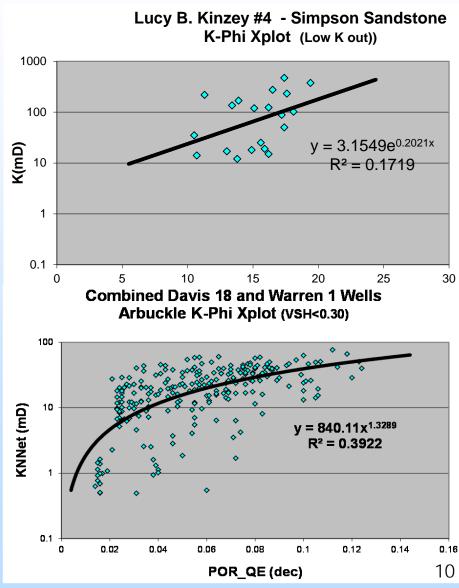
Earl M. Knighton, Jr., President

Casillas Petroleum Corp. (Pleasant Prairie Field)

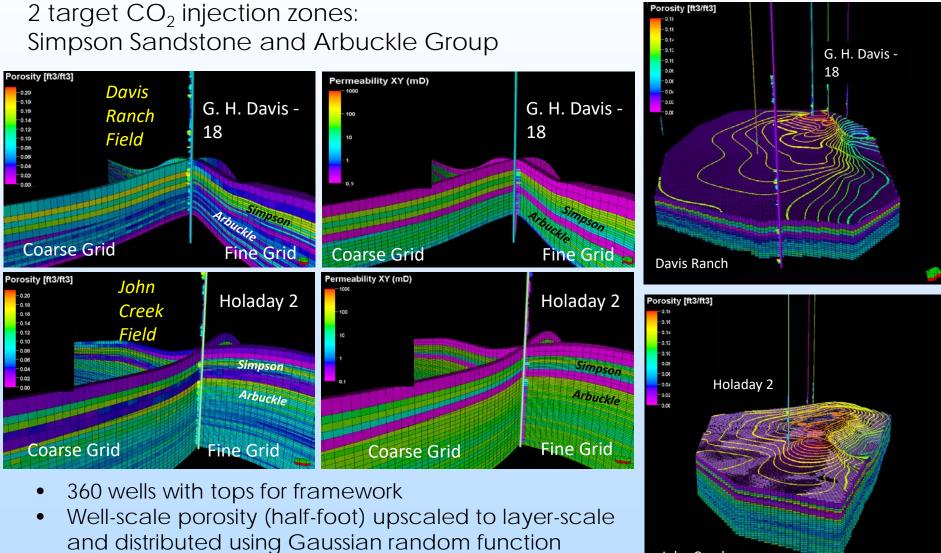
Chris K. Carson, V.P. Geology and Exploration

<u>Berexco, LLC</u>

(Wellington, Cutter, and other O&G fields) Dana Wreath, Vice President


Stroke of Luck Energy & Exploration, LLC (Leach & Newberry fields)

Ken Walker, Operator

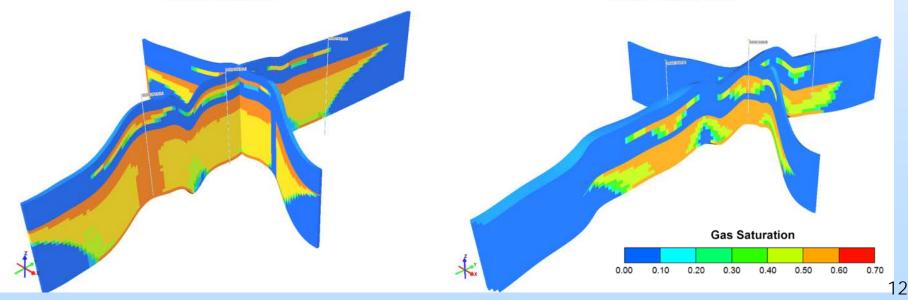

Technical Status DR & JC Fields: Reservoir Properties

- Phi estimated via:
 - Multimineral FE (n=15)
 - Neutron-density porosity (n=8)
 - Neutron count logs (n=2)
- k from AFN & dynamic data
- Core analysis data for phi-K transform

	Average K (mD)	h (ft)	Kh (mD-ft)
Simpson			
Core Analysis (Lucy B Kinzey	105	23	2415
DST Buildup (Vincent 1)	56	25	1400
DST Buildup (Eldridge 4))	182	25	4550
Arbuckle			
Injectivity Index	18	198	3564
Neural Network (Holoday 2)	13	198	2574
Neural Network (Davis 18)	19	60	1140
Neural Network (Warren 1)	27	64	1728

Technical Status DR & JC Fields: 3D Static Model

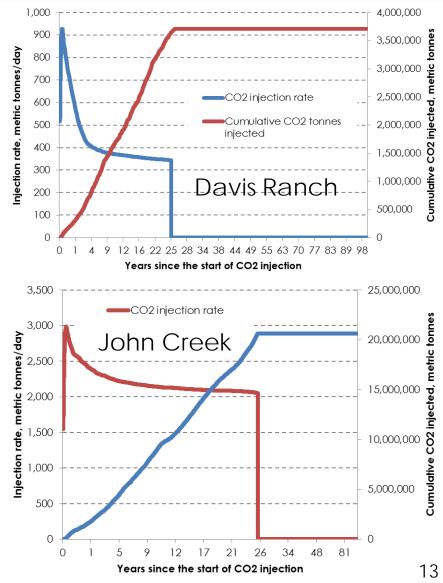
John Creek


• Permeability calculated using transform

Technical Status DR & JC Fields: Dynamic Modeling

CMG GEM		John Creek	Davis Ranch
 Carter-Tracy infinite aquifer 	Temperature	41 °C (106 ^O F)	38 °C (100 ^O F)
• Outputs:	Temperature Gradient	0.008 °C/ft	0.008 °C/ft
- Storage	Pressure	1,160 psi (7.99 MPa)	1,200 psi (8.27 MPa)
volume	TDS	30 g/l	24 g/l
 Delta pressure 	Perforation Zone	Simpson, Arbuckle	Simpson, Arbuckle
 Gas saturation 	Injection Period	25 years	25 years


John Creek Site


Davis Ranch Site

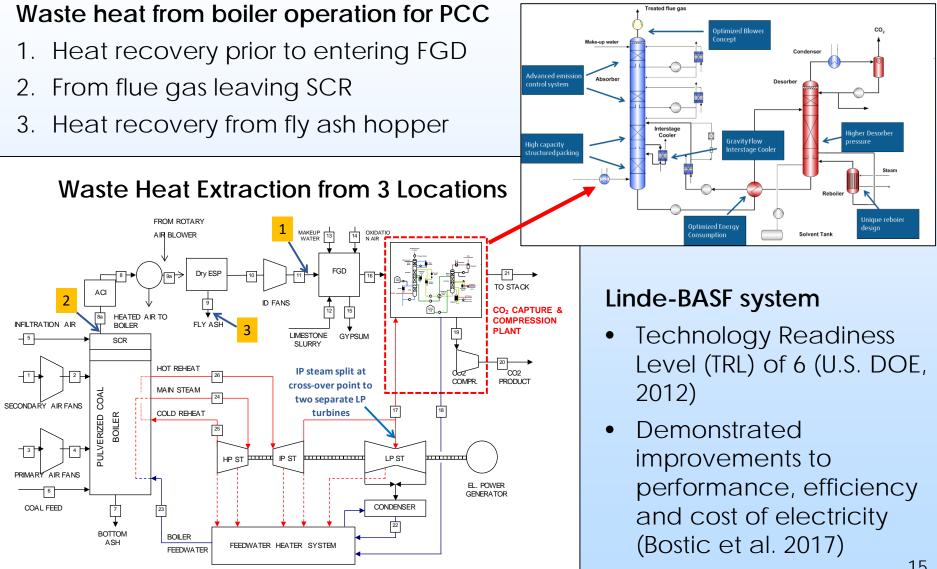
Technical Status DR & JC Fields: Simulation Results

- Davis Ranch
 - 350-940 MT/day
 - 3.6 MMT storage
- John Creek
 - 2,000-3,000 MT/day
 - 21.0 MMT storage
- Evaluating alternative storage sites

Technical Status CO₂ Source Assessments

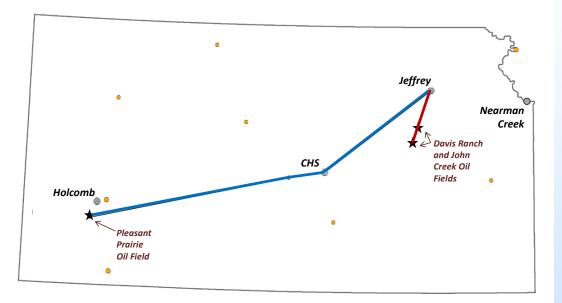
Jeffrey Energy Center

- Three 800 MWe power plants: 12.5 Mt/yr CO2
- 2.5 Mt/yr CO₂ from ~350 Mwe (partial capture)
- Linde-BASF novel amine-based Post Combustion Capture (PCC) technology


CHS refinery

- Two steam methane reformer H2 plants
- 0.76 Mt/yr CO₂ capture from flue gas
- Two options: Solvent-based PCC from flue gas or Sorbent-based pressure or vacuum swing adsorption, but lower capture rate

Accomplishments to date:


- 1. Site visits by Linde to identify optimization opportunities & data needs
- 2. Compiled technical data required for assessments
- 3. Submitted proposal for feasibility conducted by Linde (Q3 completion)

Technical Status CO₂ Source Assessments

Technical Status CO₂ Transportation Assessment

- Modified FE/NETL CO₂ Transport Cost Model
- 7 inputs (e.g., length, pumps, capacity, pressures, etc.)
- 12 outputs, including CapEx and OpEx

	Scenario	Distance (mi)	Distance (mi) X 1.2	Volume (MT/yr)	Size (inches)	CapEx (\$M)	Annual OpEx (\$M)
Jeffrey to MidCon Trunk	part of 1	151	181	2.5	12"	\$164	\$3.8
Jeffrey to Davis Ranch and John Creek	2	42	51	2.5*	12" & 8"	\$47	\$1.3
Jeffrey to CHS and Pleasant Prairie	3	294	353	3.25**	12"	\$323	\$8.0
Jeffrey to Pleasant Prairie	4	294	353	2.5	12"	\$322	\$7.2

Technical Status Legal, Regulatory, & Public Policy

- 1. Key challenges identified & conditions in Kansas defined
- 2. Possible remedies developed
- 3. Plans and strategies for implementation, including development of model statutes (draft complete)
- 4. Identified additional CCS team members & stakeholders

No	Conditions	Remedy	Plan Status	
Statutory framework	y framework Overarching challenge		Х	IP
Pore space	Ownership - who owns the pore space?	х	Х	IP
	Aggregation or pooling of pore space	Х	Х	IP
Transportation	ROW difficulties	Х	Х	IP
	Class VI well permitting	х	Х	IP
Injection & storage	CO ₂ ownership from emission through capture, transportation, & injection	Х	Х	IP
	Post-closure, long-term liability is costly and a major impediment	х	Х	IP
	Capture	Х	Х	IP
Public acceptance	Transportation			IP
	Injection and storage	Х	Х	IP

Accomplishments to Date

- ✓ Davis Ranch & John Creek site evaluation complete and alternative storage sites identified
- ✓ Site visits & data collection for CO₂ source assessments for 2 of 3 sources complete
 - ✓ Candidate technologies for PCC identified
 - ✓ Proposal for conceptual development in progress
- ✓ FE/NETL CO₂ Transport Cost Model modified to enable detailed cost estimates for complicated pipeline scenarios
- ✓ Draft model statutes that could pave the way for CO₂ transportation, injection, and storage in Kansas.
- Meetings with individuals and organizations for data & information, and feedback on conceptual plans

Lessons Learned

Non-Technical Negative:

Longevity of coal-based CO₂ sources

- Quickly being replaced by wind and natural gas
- Economic life of plants < than life of capture facility

Technical Negatives:

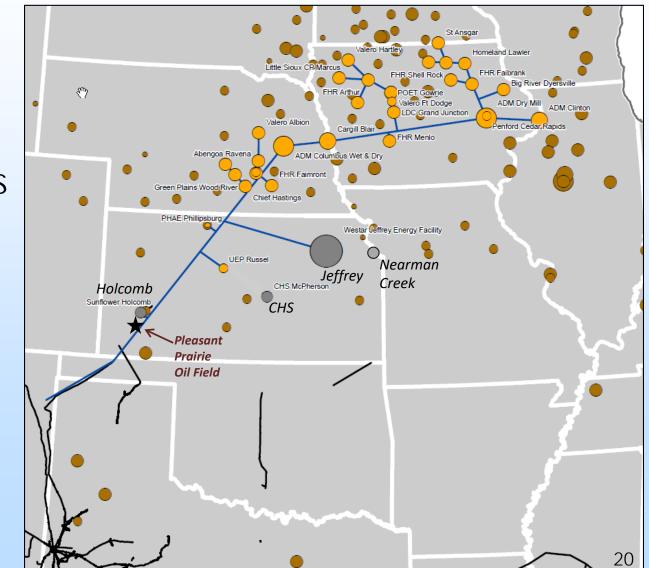
- Site closest to largest source has insufficient capacity
- Fluid levels/pressure in main disposal zone (Arbuckle) are rising.

Non-Technical Positive:

Alternative ethanol CO₂ sources

- Capture cost << transportation cost
- Infrastructure concepts gaining traction (e.g., State CO₂ Deployment Work Group and NEORI)
- 45Q expansion proposal

Technical Positives:


- Other saline aquifers (Osage and Viola) that should store 50Mt have been identified in SW Kansas.
- CO₂-EOR storage opportunities

Possible change for Phase II – focus on a program that makes economic sense

• Evaluate large-scale capture & transportation system from ethanol and fertilizer plants in upper Midwest for EOR and storage in Nebraska, Kansas, Oklahoma and Texas.

Synergy Opportunities

- Link upper Midwest ethanol-based CO₂ with Kansas sources and reservoirs
- Complements on-going CarbonSAFE projects
- Potential for collaborations with Battelle & UND-EERC

Project Summary

- ICKan team is identifying and addressing major technical and non-technical challenges of implementing commercial-scale CCS in Kansas
- Reservoir characterization, geologic modeling, and dynamic simulations suggest that eastern KS site may not be suitable for scale of injection
- CO₂ source assessments are being used to identify the most suitable post-combustion capture technologies
- CCS model being evaluated requires substantial transportation infrastructure and various pipeline scenarios are being evaluated, including linkages to upper Midwest ethanol CO₂ source
- Continue to develop strategy to address the challenges and opportunities for commercial-scale CCS in Kansas

Questions?

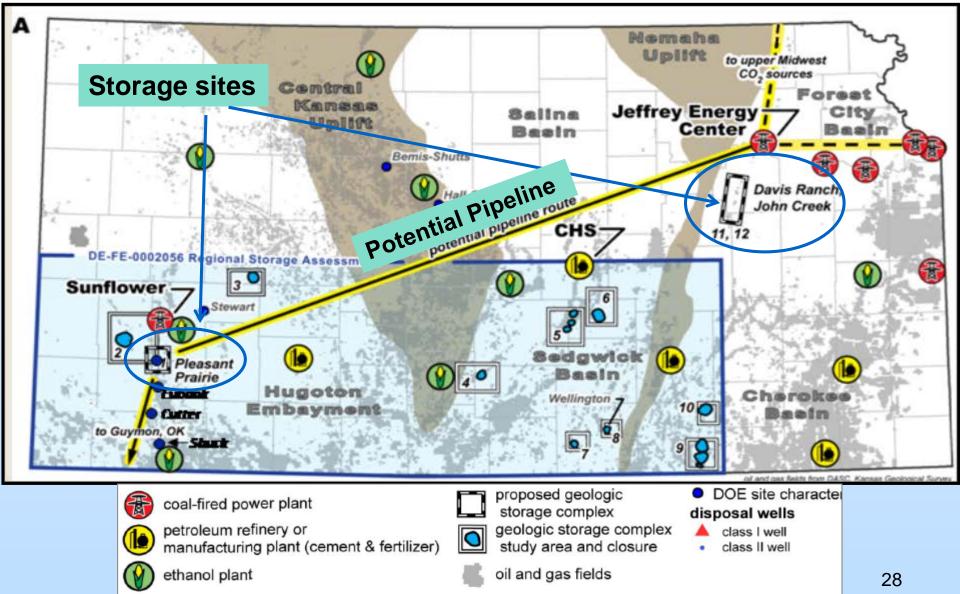
Appendix

Benefit to the Program

DOE Program Goals This Study Goal 1: Develop & validate technologies to ensure 99 % storage permanence, Sub-basinal characterizations **Goal 2**: Develop technologies to improve reservoir storage efficiency while ensuring Testing site screening containment effectiveness tools (i.e., NRAP) **Goal 3**: Support industry's ability to predict CO₂ storage capacity in geologic **Reservoir & simulation** formations to within ±30 % models for geological storage Goal 4: Develop best practices for commercialscale CCS

Benefit Statement

ICKan will address the handling of CO₂ emissions from the source and transport them to the storage site utilizing the combined knowledge and experience of The Linde Group including their own research on post-combustion 2nd Generation CO₂ capture currently sponsored by the DOE, the electrical utilities, refinery, and the latest R&D efforts such as DOE's Carbon Capture Simulation Initiative. The knowledge, experience, and lessons learned by the KGS regarding regional studies, site characterization, monitoring, EPA Class VI permitting, and incorporating NRAP models and tools will be bring best-practices to bear on proving up a commercial-scale carbon storage complex that is safe and dependable. In this Phase I: Integrated CCS Pre-Feasibility Study, ICKan will complete the formation of the CCS Coordination Team who will deliver a plan and strategy to address the technical and nontechnical challenges specific to commercial-scale deployment of a CO₂ storage project utilizing the experience and the expertise of the Team. A development plan will address technical requirements, economic feasibility, and public acceptance of an eventual storage project at the primary source-sink site at Westar Energy's Jeffrey Energy Center. High-level technical evaluations will also be made of sub-basin and potential CO₂ sources utilizing prior experience and methodologies developed previously and for this project. The ICKan and CCS Coordination Team will generate information that will allow DOE to make a determination of the proposed storage complex's level of readiness for additional development under Phase II, based upon the findings for commercial-scale capture, transportation, and storage sites identified as part of this investigation. Information acquired will be shared via the NETL-EDX data portal. 25

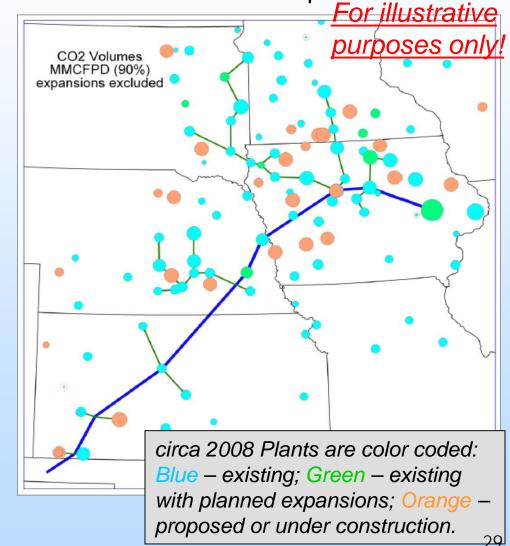

Project Overview: Goals & Objectives

- Identify and address major technical and nontechnical challenges of implementing CO₂ capture and transport and establishing secure geologic storage for CO₂ in Kansas
- Evaluate and develop a plan and strategy to address the challenges and opportunities for commercial-scale CCS in Kansas

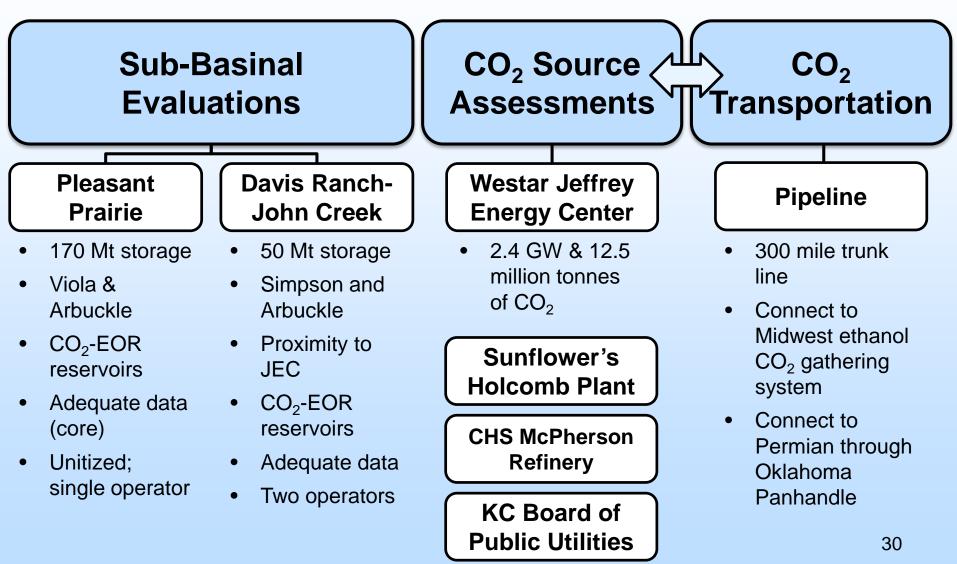
Project Overview: Base Case Scenario

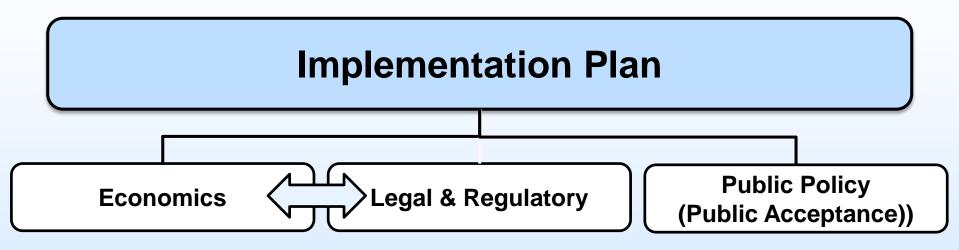
- Capture 50 million tonnes CO₂ from one of three Jeffrey Energy Center's 800 MWe plants over a 20 year period (2.5Mt/yr)
- Compress CO₂ and transport 300 miles to Pleasant Prairie Field in SW Kansas.
 - Alternative: 50 miles to Davis Ranch and John Creek Fields.
- Inject and permanently store 50 million tonnes CO₂ in the Viola Formation and Arbuckle Group

Jeffrey to SW Kansas


Base Case + Ethanol CO₂

Could reduce net cost through scaling and tariffs


- Capture Ethanol CO2
- Build extensive gathering system
- Join trunk line and transport to SW Kansas and possibly to Permian Basin for EOR
- Collect tariffs for transporting Ethanol CO2


January 2008 private study Gathering system connecting 44 ethanol plants

Technical Evaluations

Non-Technical Evaluations

- Capture & transportation economic feasibility (with or w/o ethanol component)
- Financial backing
- Financial assurance under Class VI
- State incentives
- Federal tax policy

- Pore space property rights including force unitization
- CO₂ ownership & liability
- MVA requirements under UIC Class VI
- Varying stakeholder interests
- Right-of-ways
- Utility rate-payer obligations

- Identify stakeholders
- Foster relationships
- Public perception
- Political challenges
- Injection-induced seismicity 31

Success Criteria

- ✓ CCS Coordination
 Team
- Reservoirs
 characterized
- ✓ CO2 source assessments
- ✓ CO2 transportation assessment
- ✓ Implementation plan

- Go-No Go decision point in November 2017
- Tied to application for Phase II of CarbonSAFE

Organization: Phase I Research Team

18 team members, four subcontractors and KGS staff

Project Management & Coordination, Geological Characterization

Kansas Geological Survey University of Kansas Lawrence, KS

Tandis Bidgoli, PI, Assistant Scientist Lynn Watney, Senior Scientific Fellow Eugene Holubnyak, Research Scientist K. David Newell, Associate Scientist John Doveton, Senior Scientific Fellow Susan Stover, Outreach Manager Mina FazelAlavi, Engineering Research Asst. John Victorine, Research Asst., Programming Jennifer Hollenbah - CO2 Programs Manager

Improved Hydrocarbon Recovery, LLC

Lawrence, KS Martin Dubois, Joint-PI, Project Manager CO2 Source Assessments, Capture & Transportation, Economic Feasibility

Linde Group (Americas Division)

Houston, TX

Krish Krishnamurthy, Head of Group R&D

Kevin Watts, Dir. O&G Business Development

Energy, Environmental, Regulatory, & Business Law & Contracts

Depew Gillen Rathbun & McInteer, LC Wichita, KS

Christopher Steincamp, Attorney at Law Joseph Schremmer - Attorney at Law

Policy Analysis, Public Outreach & Acceptance

<u>Great Plains Institute</u> <u>Minneapolis, MN</u> Brendan Jordan, Vice President Brad Crabtree, V.P. Fossil Energy Jennifer Christensen, Senior Associate Dane McFarlane, Senior Research Analysist

Organization: Phase I Industry Partners

Four CO ₂ Sources	Five Oil Gas Companies
CO2 Sources	
Westar Energy	Kansas Oil & Gas Operators
Brad Loveless, Exec. Director Environ. Services	Blake Production Company, Inc.
Dan Wilkus, Director - Air Programs	(Davis Ranch and John Creek fields)
Mark Gettys, Business Manager	Austin Vernon, Vice President
Kansas City Board of Public Utilities	Knighton Oil Company, Inc.
Ingrid Seltzer, Director of Environmental Services	(John Creek Field)
Sunflower Electric Power Corporation	Earl M. Knighton, Jr., President
Clare Gustin, V.P. Member Services & Ext. Affairs	Casillas Petroleum Corp.
CHS, Inc. (McPherson Refinery)	(Pleasant Prairie Field)
Richard K. Leicht, Vice President of Refining	Chris K. Carson, V.P. Geology and Exploration
Rick Johnson, Vice President of Refining	Berexco, LLC
Regulatory	(Wellington, Cutter, and other O&G fields)
Kansas Department of Health & Environment	Dana Wreath, Vice President
Division of Environment	Stroke of Luck Energy & Exploration, LLC
John W. Mitchell, Director	(Leach & Newberry fields)
Bureau of Air	Ken Walker, Operator
John W. Mitchell, Director	34

Gantt Chart

							20)17						2018								
Task	Task Name	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6			
Task 1.0	Project Management & Planning Integrated CCS for Kansas (ICKan)																					
Subtask 1.1	Fulfill requirements for National Environmental Policy Act (NEPA																					
Subtask 1.2	Conduct a kick-off meeting to set expectations																					
Subtask 1.3	Conduct regularly scheduled meetings and update tracking																					
Subtask 1.4	Monitor and control project scope			:						÷			÷									
Subtask 1.5	Monitor and control project schedule																					
Subtask 1.6	Monitor and control project risk																					
Subtask 1.7	Maintain and revise the Data Management Plan including submital of data to NETL-EDX																					
Subtask 1.8	Revisions to the Project Management Plan after submission																					
Task 2.0	Establish a Carbon Capture & Storage (CCS) Coordination Team																					
Subtask 2.1	Identify additional CCS team members																					
Subtask 2.1 Subtask 2.2	Identify additional stakeholders that should be added to the CCS team																		_			
	Recruit & gain commitment of additional CCS team members identified																					
Subtask 2.3 Subtask 2.4							-		-													
Sublask 2.4	Conduct a formal meeting that includes Phase I team & committed Phase II team members																					
Task 3.0	Develop a plan to address challenges of a commercial-scale CCS Project																					
Subtask 3.1	Identify challenges & develop a plan to address challenges for CO2 capture from anthropogenic sources																					
Subtask 3.2	Identify challenges & develop a plan to address challenges for CO2 transportation & injection																					
Subtask 3.3	Identify challenges & develop a plan to address challenges for CO2 storage in geologic complexes																					
Task 4.0	Perform high level sub-basinal evaluations using NRAP & related DOE tools																					
Subtask 4.1	Review storage capacity of geologic complexes identified in this proposal & consider alternatives																					
Subtask 4.1 Subtask 4.2	Conduct high-level technical analysis of suitable geologic complexes using NRAP-IAM-CS & other tools for integrated																					
Sudiask 4.2	assessment																					
Subtask 4.3	Compare results using NRAP with methods used in prior DOE contracts including regional & subbasin CO2 storage & Class VI permit																					
Subtask 4.4	Develop an implementation plan & strategy for commercial-scale, safe & effective CO2 storage																	in the				
Task 5.0	Perform a high level technical CO2 source assessment for capture																					
Subtask 5.1	Review current technologies & CO2 sources of team members & nearby sources using NATCARB, Global CO2 Storage Portal, & KDM																					
Subtask 5.2.	Determine novel technologies or approaches for CO2 capture																					
Subtask 5.3	Develop an implementation plan & strategy for cost effective & reliable carbon capture					_																
Task 6.0	Perform a high level technical assessment for CO2 transportation																					
Subtask 6.1	Review current technologies or CO2 transportation																					
Subtask 6.2	Determine novel technologies or approaches for CO2 capture																					
Subtask 6.3	Develop a plan for cost-efficient & secure transportation infrastructure															·						
Task 7.0	Technology Transfer																					
Subtask 7.1	Maintain website on KGS server to facilitate effective & efficient interaction of the team																					
Subtask 7.2	Public presentations																					
Subtask 7.3	Publications																					

Bibliography

- Bidgoli, T.S., Dubois, M., Watney, W.L., Stover, S., Holubnyak, Y., Hollenbach, A., Jennings, J.C., Victorine, J., and Watts, K., 2017, Is commercial-scale CO2 capture and geologic storage a viable enterprise for Kansas?: AAPG Midcontinent Section Meeting, Oklahoma City, OK.
- Hollenbach, A., Bidgoli, T.S., Dubois, M., Holubnyak, Y., and FazelAlavi, M., 2017, Evaluating the Feasibility of CO2 Storage through Reservoir Characterization and Geologic Modeling of the Viola Formation and Arbuckle Group in Kansas: AAPG Midcontinent Section Meeting, Oklahoma City, OK.
- Jennings, J. and Bidgoli, T.S., 2017, Identifying at Risk Areas for Injection-Induced Seismicity through Subsurface of Southern Kansas: AAPG Midcontinent Section Meeting, Oklahoma City, OK.