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Site Characteristics – Scientific Opportunities
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Natural CO2 production
– Opportunity to study the natural accumulation and 

long term effects
CO2 in a reactive rock

– Opportunity to study geochemical effects on both 
reservoir rock (long term fate of CO2) and caprock
(storage security)

– To accomplish this, injection should be in water leg of 
the same formation

– Still retain engineered system learnings on injection, 
transport, capacity, etc.

Duperow is a fractured reservoir with very 
secure caprock

– Opportunity to investigate impact of fracture 
permeability



Domes Are Attractive Early Storage Target
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Half of the current major point source 
emissions for the next  100 years ~7.5 GT
Resource Estimate for 3 Domes   ~5.3 GT

• Prevent trespass issues – buoyancy flow will take CO2 to top of 
dome

• Potential use as carbon warehouse – decouple anthropogenic CO2
rate from utilization rate
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Project Overview
Original Plan
• Permitting & Public Outreach
• Site Characterization
• Infrastructure Development

– Characterization wells
– 1 Injection Well
– Monitoring Wells, Pipelines Compressor

• Injection Operations  
– 4 years

• Monitoring & Modeling
• Site Closure
After extensive efforts by BSCSP, this objective proved to 
be unachievable for two reasons: (1) although the natural 
CO2 was present as expected, BSCSP was unable to 
produce the CO2 in large quantities; and (2) the total 
dissolved solids (TDS) of the brine in the targeted 
injection formation (Duperow) is less than 10,000 ppm



Regional Water Quality Data
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Project Re-Scope
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Project Re-scope:  Maximize Learnings from Samples and Data

Continued…

• Further develop fracture–matrix permeability interaction models incorporating 
data previously mentioned; 

• Use the dual permeability model to refine reservoir performance for fractured 
carbonate reservoirs including capacity, injectivity and storage efficiency; 

• Apply an integrated assessment model to Kevin Dome as a test case for NRAP 
tools; 

• Process and analyze the surface monitoring data, assess baseline variability; 
• Modify assessments of regional and national storage resources with information 

gained through the Kevin Dome project; 
• Capture lessons learned from the permitting, risk, and management components 

of the Kevin Dome project through continued analyses and the development of 
peer-reviewed publications and web-based applications for information sharing 
and

• Use the Kevin Dome project to illustrate unanticipated geologic scenarios to 
inform EPA’s scheduled evaluation of the UIC Class VI rule. 



Kevin Structure Tops & Well Penetrations
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NW - SE Cross Section Kevin Dome
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Kevin Dome
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CO2 in middle Duperow
Two “gold standard” 
seals

– Upper Duperow
~200’  tight 
carbonates and 
interbedded
anhydites

– Caprock~ 150’ 
Anhydrite

Multiple tertiary seals



Existing Well Tops Used for Stratigraphy
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19 Existing Logs Digitized - Petrophysics
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Use Existing Seismic Lines
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Well Drilling, Log and Core Data
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Well Locations
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Geophysical 
Characterization & 

Monitoring:
Well Logging
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Logs Wells

1st Prod Inj

Downhole P & T Cont. Cont.

Gamma Ray Initial Initial

Resistivity Initial Initial

Porosity Initial Initial

Density Initial Initial

Caliper Initial Initial

P&S Sonic Initial Initial

Sonic Scanner Initial Initial

Isolation Scan Initial Initial

FMI Initial Initial

NMR Initial Initial

Natural Gamma Initial Initial

Elemental Spec Initial Initial

Cement Eval Initial Initial

Pulsed Neutron Initial Annual



Site Characterization:  ELAN Analysis and Well Correlation
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Excellent correlation for wells 12.8 km apart



Core Plan – Intervals and  Analyses
Porosity
Permeability (horizontal, vertical, relative)
Capillary pressure (mercury injection)
Core flood, geochemical reactivity 
Seismic properties, anisotropy analysis
Tight rock analysis)
Petrology/Petrography
Bulk XRD
Powder XRD
NMR calibration
SEM/EDS
Micro-CT imaging
Ductility and rock strength
Bulk composition XRF
BET surface area
Core spectral gamma ray
Whole rock analysis, REE
XrF, ERD
Thin section analysis
Carbon isotopes



Middle Duperow – Fractures
Site Characterization:  Core 
Fracture Analysis
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Complicated Depositional Environment in the Duperow
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Heterogeneity and Porosity Characteristics of the Middle Duperow
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M=moldic, IG= intergranular, 
F= fracture



Core Analyses
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XRD of Core Plugs (Permeable Zones)
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92 – 98% Dolomite
0 – 5.6% Calcite
0 – 2% Quartz
0 – 3.5% Anhydrite
0 – 6.4 % Gypsum



Core Flood Experiments
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 Sample 

ID 
Avg. pressure 

(psi) 
Temperature 

(°C) Brine/DI 
Duration of N2 
exposure (days) 

Duration of CO2 
exposure (days) 

Set 1 

 D69A 1400 60 Brine 5 28 
 D69B 1400 60 Brine 5 28 
 D69C 1400 60 Brine 33 0 
 W44A 1400 60 Brine 5 28 
 W44B 1400 60 Brine 5 28 
 W44C 1400 60 Brine 33 0 
 W46A 1400 60 Brine 5 28 
 W46B 1400 60 Brine 5 28 
 W46C 1400 60 Brine 33 0 

Set 2 

 D70A 1400 60 DI 5 28 
 D70B 1400 60 DI 5 28 
 D70C 1400 60 DI 5+28 (not consecutive) 0 
 D68A 1400 60 Brine 5 0 

 



Core Flood Experiments
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Fracture Analysis of Cored Intervals of the Duperow
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Task R1. Core Studies: Motivation
• Assess caprock geomechanical 

properties and suitability
• Analyze fracture-permeability relations to 

inform caprock damage and leakage 
scenarios

• Determine relationship of stress 
conditions and fracture reactivation on 
permeability

• Provide input to induced seismicity 
hazard assessment



Caprock Geomechanical Tests
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• Potlatch Anhydrite
• 3687'-depth of the Wallawein

well 
• Sample density 2.5 - 2.83 

g/cm3(close to the theoretical 
density of anhydrite (2.97 
g/cm3 indicating nearly pure 
anhydrite with very little 
porosity.)

• Single crystals of anhydrite 
appear to be as large as 1-3 
cm



Caprock Geomechanical Tests
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Summary of unconfined strength (150±24 
MPa) and Young’s modulus (90±10 Gpa) 
compared with shale (X) and anhydrite (    ) 
The Poisson’s ratio is 0.32±0.05. 

Anhydrite (Hangx 2010)

Potlach Anhydrite



Caprock Geomechanical Tests
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UCS (MPA) Young’s (GPa) Poisson

All Vert Horiz All Vert Horiz All Vert Horiz

Mean 153.1 150.8 155.4 91.42 93.29 89.55 0.32 0.35 0.30

StdDev 27.47 15.30 40.46 11.49 14.15 10.94 0.06 0.07 0.04

• The Potlatch Anhydrite is very 
strong in both orientations 

• The average Young’s modulus 
(91 Gpa) reflects a very stiff 
material

• Samples dilated strongly at peak 
strength before failing indicating 
significant plasticity even under 
unconfined conditions



Caprock Geomechanical Analysis
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Upper Duperow (tight carbonate) - Stronger
Potlach Anhydrite - Stiffer



Potlatch: 15 MPa Effective Stress Experiment



X-ray radiography of 3.5 MPa experiment



Seismic Structural Data
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Bow Island

Lower Bow Island

Swift
Madison

Bakken

Souris River

Acoustic basement

Structure Top Duperow from Well 
Control and Structure Top Bakken 

Shale from Seismic

Structural surfaces from 
Shear Wave (SH) Seismic 
BSCSP Kevin Dome



BSCSP Seismic Monitoring Program
Poststack P and SH inversion IsSS with Wallewein GR

M Duperow Porosity



BSCSP Seismic Monitoring Program

9C dataset has good to excellent P and SH signal useful for characterizing 
Middle Duperow porosity zones
• Well to seismic matches, particularly in paleozoic, are excellent on P and SH 

datasets
• Subtle NE-SW structural fabric points back at crest of Kevin dome throughout 

paleozoic section
• Joint inversion performance was good, as expected, and middle Duperow

porosity zone is readily visible on both impedances
• Meaningful impedance variations are visible on joint inversion output at middle 

Duperow level
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mid-Duperow porosity 
zone Ip average has 
decent downdip fit to 
Nisku (proxy for Duperow) 
structure
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Mid-Duperow ρ 
from P/SH/SV
inversion also 
shows some 
downdip fit.

SV offset >20 deg. 
To emphasize 
density
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Inline (left) and crossline (right) through Wallewein and 
Danielson wells; seismic is Ip from Vecta joint P/SH 
inversion; line locations shown on index map on left

mid-
Duperow
porosity



Task R2. Full-Waveform Inversion and Reverse-Time 
Migration of a 2D Line Kevin Dome Seismic Data

Sources in red and receivers in blue of the Kevin Dome seismic survey. Initial 
data analyses are on a 2D line in black



Full-Waveform Inversion of a 2D Line Kevin 
Dome Seismic Data: Revealing some low-

velocity zones

Initial low-resolution P-
wave velocity model

LANL’s full-waveform 
inversion result of P-wave 
velocity containing some 
low-velocity zones



Reverse-Time Migration of a 2D Line Kevin Dome 
Seismic Data

Reverse-time 
migration using 
LANL’s full-
waveform inversion 
result of P-wave 
velocity

Reverse-time 
migration using the 
initial low-
resolution P-wave 
velocity model



3D Depth Converted Seismic
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3D Depth Converted Seismic with IP, IS, Density
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THE LEADING EDGE OCTOBER 1998, p 1396

“The shear-waves responded
to a change in pore aspect 
ratio or preferential opening 
of microfractures resulting 
from the injection of CO2. The 
faster shear-wave (S1) 
velocity was attenuated less 
with the resulting change in 
low-aspect ratio crack 
porosity.”



Modeling
Static Geologic Model

– Three domain sizes (Regional, Dome, Production / Injection) 
Multiphase Flow Modeling For CO2 Injection

– Sensitivity Analysis
• Three rock parameters (different k, Φ)
• Two injection rates (constant, stepped)

– Multiple Interacting Continua modeling to account for both fracture 
and matrix permeability

Multiphase Flow – Production
– Sensitivity Analysis

• Three Gas-water contact heights
• Pressure effects at multiple distances as a function of production 

rate / duration
Geochemical & Reactive Transport Modeling
Risk Modeling

48
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Static Model
Petra – Works with IHS well log 
database.  Use ~1000 wells to pick 
formation tops.  Good for structural 
information.  Export info to Petrel.

Petrel – Incorporate logs, petro-
physical properties (18 wells in 
injection zone), existing 2D 
seismic and BSCSP acquired 
3D seismic.  Export cellular 
model info for flow modeling.



Porosity & Permeability Modeling Within Rock Types
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Refine Model Based on Geologic Interpretation
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Depositional Environment



Neural Net Depositional Env. Predictions
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Good Neural Net Match Along Core Interval
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Pore – Perm Cross Plot for Depositional Env
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Porosity vs. P-Impedance
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Use Multi-Component Seismic to Model Heterogeneity
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Predicted Rock Types
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Flow Modeling - Multiple Interacting Continua (MINC)

The cores extracted from both wells and the step-rate injection tests at the 
monitoring well showed that the target production/injection formation, the 
Middle Duperow, is highly fractured in its high-porosity zone.
- 2D radial MINC TOUGH2 model, with one fracture continuum and four 

matrix continua, with volumetric fraction of 0.01, 0.05, 0.20, 0.34, and 
0.40, and porosity of 1.0, 0.15, 0.10, 0.10, and 0.08, respectively; 

- In this model, global fracture-fracture connections, global matrix-matrix 
connections, and local fracture-matrix connections are considered;

- Four fracture permeability (Kf) parameters are considered;
- Fracture spacing of the high-porosity layer of the Middle Duperow is 

based on core fracture mapping and FMI logging, and fracture aperture 
or fracture permeability is based on the step-rate injection test analysis 
and sensitivity analysis; 

- The matrix permeability (Km) is based on the effective permeability 
derived from the step-rate injection tests, while matrix porosity is based 
on core measurements; 
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MINC Simulated Pressure Buildup (ΔP)
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MINC Simulated CO2 Plumes
Fracture Matrix
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MINC Simulation results
Site-specific data show the Middle Duperow injection target is highly fractured.
We developed a MINC model for a 2D radial TOUGH2 model, with one fracture 
continuum and four matrix continua. 
• The site-specific data used in the model includes matrix  porosity from core 

measurements, matrix permeability from the step-rate injection test, fracture 
spacing from core images, and fracture permeability through different 
sensitivity cases; 

• The injection rate is constant at 250,000 Mt CO2 /yr over four years; 
• The simulated bottomhole injection pressure indicates that the fractured 

Middle Duperow has sufficient injectivity because fractures significantly 
lower injection pressure in comparison to matrix only cases; 

• The majority of injected CO2 is stored in the rock matrix because of the 
strong fracture-matrix interactions of CO2 flow;

• The benefits of enhanced injectivity and sufficient storage efficiency in 
fractured rock can be attributed to the high mobility of CO2 flow in fractures, 
with high CO2 saturation and thus relative permeability, and to the strong 
fracture-matrix interaction of CO2 flow.
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Key Points
 Seismic indicates that structure conforms to the original 

mapping and no major faults are present in the injection area.
 Modern log suites from the production area and injection area 

demonstrate rock units in the reservoir intervals are very 
continuous and correlate extremely well over 7 miles.

 Core and log data indicate very good reservoir properties 
consistent over large regions.

 Natural fracturing is present but is bedding constrained and 
confined to the reservoir interval. 

 Core from the Potlatch Anhydrite and the Upper Duperow
caprock demonstrate the mechanical integrity of both 
intervals. 



Assurance Monitoring -
Establishing a Baseline Before CO2 Injection
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• Water chemistry
• Water quality
• CO2 soil flux
• Imaging of vegetation
• Atmospheric CO2

MAP
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SAMPLING OF SHALLOW WELLS AND SURFACE WATERS

H and O Isotopic Data 

Lamont-Doherty Earth Observatory

Establish a baseline for introduced (SF6, SF5CF5, PFC’s, 14C) and 
natural (noble gases, H and O isotopes, 13C) tracers. 
RESULTS:  Very low levels of SF6, SF5CF3, PFC’s measured (mostly 
below the detection limit)

Tracers

δ2H and δ18O values are slightly below 
the global meteoric water line (GMWL) and the local 
meteoric water line (LMWL) 

• Most common ions are sodium (Na), sulfate (SO4), and 
chloride (Cl)

• Chemically consistent with geology of the area
• Significant seasonal variability 

Idaho National Laboratory

General Water Chemistry

Samples collected Oct. 2013 and May 2014 from 6 wells and 6 surface
waters in a 1.5 mile radius of the proposed injection well site.
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• Installed June 2014
• Data so far consistent with 

field in agricultural use

EDDY COVARIANCE

• Portable accumulation chamber
• Survey done June 26-28, 2014
• 102-point grid covering 1 square mile 

centered on proposed injection site
• Values typical of soil under this type of 

land use

PROPOSED INJECTION SITE

SOIL CO2 FLUX SURVEY

MSU

MSU
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Eddy Covariance & Soil Flux
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HYPERSPECTRAL IMAGING

The flight plan for monitoring the production 
well area, pipeline area, and injection well 
area.  

Three color images of two flight paths on June 
24, 2014.  Initial geo-rectification using the Inertial 
Measurement Unit was conducted and further 
improvements to the geo-rectification will utilize 
ground based GPS data.  

The hyperspectral imaging system 
mounted in a Cessna 172 for flight based 
monitoring.  Spectral reflectance between 
400 and 1100 nm for each pixel of a digital 
image is collected.



Hyperspectral Imaging
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Seismic 
tracks 
evident in 
hyperspectral 
data when no 
evidence on 
the ground 
was visible



LIDAR (TESTED IN 2013 IN PRODUCTION AREA)



Wallewein (Injection Region) Well Data
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Well ID MSU Sample ID
Depth 
Range Date Collected

TDS 
(ppm) 

Wallewein 22-1 Zone 3, Sample 1 4185-4190 December 22, 2014 6420
Wallewein 22-1 Zone 3, Sample 2 4185-4190 December 22, 2014 6120
Wallewein 22-1 Zone 3, Sample 4 4185-4190 December 22, 2014 2815
Wallewein 22-1 Zone 3, Sample 5 4185-4190 December 22, 2014 5350
Wallewein 22-1 Zone 3, Sample 6 4185-4190 December 22, 2014 7010
Wallewein 22-1 Zone 5, Sample 1 4040-4057 January 9, 2015 11000
Wallewein 22-1 Zone 5, Sample 2 4040-4057 January 9, 2015 6692
Wallewein 22-1 Zone 5, Sample 3 4040-4057 January 9, 2015 9200
Wallewein 22-1 Zone 5, Sample 4 4040-4057 October 15, 2015 8510
Wallewein 22-1 Zone 5, Sample 4a 4040-4057 October 15, 2015 10200
Wallewein 22-1 Zone 5, Sample 5 4040-4057 October 22, 2015 7250
Wallewein 22-1 Zone 5, Sample 5a 4040-4057 October 22, 2015 8750
Wallewein 22-1 Zone 5, Sample 6 4040-4057 October 27, 2015 7160
Wallewein 22-1 Zone 5, Sample 6a 4040-4057 October 27, 2015 8780
Wallewein 22-1 Zone 5, Sample 7 4040-4057 October 27, 2015 7190

Wallewein 22-1 Duperow Samples

Sample Info



Accomplishments to Date

71

Regional Characterization
– Contributions to Carbon Atlas
– Evaluating EOR opportunities

Outreach
– Multiple community meetings, 

individual landowner meetings, 
website, newsletters, etc.

– Significant interest in 
collaboration

Permitting
–NEPA EA complete
–Landowner permits in place
–Permit database tool

Risk Management
– FEPS & Scenarios complete
– Database created
– Preliminary probabilistic 

modeling preformed

Site Characterization
– Kevin Atlas created with surface and 

subsurface data incorporated
– Over 32 sq. mi. 3D, 9C seismic shot
– Static geologic model created

• Hundreds of wells for tops, 32 logs 
digitized for geophysical parameters, 
2D seismic, 3D, 9C seismic

– Initial flow modeling performed
• Injection & production regions, 

sensitivity analysis, reactive 
transport

– First two wells drilled
• Core acquired, analyzed
• Logs acquired
• Seismic being tied to wells
• Well tests performed

– Baseline assurance monitoring 
initiated

• Three water sampling campaigns
• Soil flux (chambers, eddy 

covariance)
• Hyperspectral Imaging flight
• LIDAR



Accomplishments to Date
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Seismic
–Joint inversions performed, depth converted
–Full waveform inversion initiated

Modeling
–Version 2 static geologic model created
–Version 3 using facies interpretation under way
–Fracture / matrix flow modeling well underway

Core Analysis
–Fracture / matrix core flow experiments initiated
–Caprock studies well underway



US-EPA Class IV Requirements

• All well materials must be compatible with fluids with 
which the materials may be expected to come into 
contact

• Logging required
• Continuous monitoring of the annulus space between the 

injection tubing and long string casing.
• Continuous monitoring of injection pressure
• Surface casing set below lowermost USDW
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Project Re-scope:  Class VI - § 146.86 Injection well construction



US-EPA Class IV Requirements

• Default is 50 years
• Alternative PISC can be approved by Director
• PISC Plan requires monitoring methods, locations and 

frequency and schedule for submitting results to Director
• Alternate PISC time period must demonstrate non-

endangerment of USDWs
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Project Re-scope:  Class VI - 146.93 Post-injection site care

Main Issues: 
• Duration, especially for pilot / demo projects 
• Doesn’t allow for injectivity tests
• May discourage investigating secondary sites



US-EPA Class IV Requirements
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Project Re-Scope: Underground Source of Drinking Water (USDW) Definition

• (40 CFR) Section 144.3 is an aquifer or part of an aquifer which:
a. supplies any public water system, or contains a sufficient quantity of ground 

water to supply a public water system and currently supplies drinking water for 
human consumption or contains fewer than 10,000 milligrams/liter of Total 
Dissolved Solids (TDS); and

b. is not an exempted aquifer.
• An "exempted aquifer" is part or all of an aquifer which meets the definition of a 

USDW but which has been exempted according to criteria in 40 CFR Section 146.4: 
1. It is mineral, hydrocarbon or geothermal energy producing, or can be demonstrated by a 

permit applicant as part of a permit application for a Class II or III operation to contain 
minerals or hydrocarbons that considering their quantity and location are expected to be 
commercially producible;

2. It is situated at a depth or location which makes recovery of water for drinking water 
purposes economically or technologically impractical;

3. It is so contaminated that it would be economically or technologically impractical to 
render that water fit for human consumption;

4. It is located over a Class III well mining area subject to subsidence or catastrophic 
collapse; 

5. The total dissolved solids content of the ground water is more than 3,000 and less than 
10,000 milligrams/liter and it is not reasonably expected to supply a public water system.



US-EPA Class IV Requirements
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USDW under Class II, but not Class VI

If the target reservoir (the Duperow) had high enough salinity, the lower 
most USDW by UIC Class VI regulations would be the Madison (~5000 
ppm TDS).
The Madison is oil producing and so is NOT a USDW under Class II 
because of exemptions
Yet to store in the Duperow beneath the Madison, the CO2 storage project 
would have to treat the Madison as a USDW.  This would mean:
• Setting surface casing through the Madison (which is karsted).  The 

larger diameter borehole would likely have less integrity.
• Wastewater disposal is permitted in the Madison, yet a storage project 

in the Duperow would have to protect it against any reduction in water 
quality

• CO2 EOR could be permitted in the Madison, yet a storage project in 
the Duperow would have to protect the Madison from CO2 intrusion 
while others intentionally inject



US-EPA Class IV Requirements
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CO2 EOR in Could be Permitted in Class VI USDW



US-EPA Class IV Requirements
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Regional Significance:

Oil fields producing from the 
Madison (red) and produced 
water sampled from Madison 
Group formations less than 
10,000 mg/L TDS (blue)



US-EPA Class IV Impact on Research Projects
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Areal Extent of Monitoring:

Plume 
Based

Pressure Based



US-EPA Class IV Impact on Research Projects
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Depth of USDW:

Exemptions 
Allowed

Defined by 
TDS Only



Compliance or Science?
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Duration of 
Monitoring:

Phase III 
Program
(3 years)

Default 
Class VI 

PISC
(50 Years)

An enormous change in the 4 dimensional 
post-injection monitoring responsibility



US-EPA Class IV Impact on Research Projects
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Class VI Scale and Cost:

• EPA documentation indicates concern about risk related to total quantity 
of injectate (Preamble to Rule, Factsheet, Multiple presentations).  

• This makes sense.  A 500 MW power –plant could inject ~4MT / yr for 50 
years – 200 MT total.  And there could be many.  This is a different scale 
than most current UIC activities.

• But current experimental demos are ~250 kT over 4 yrs, 6.25% of the 
injection rate and 2% total quantity of a commercial project.

• Can we do something to confirm EPAs intuition that risk scales with 
injectate quantity?  Can EPA issue guidance reducing stringency so 
demos can yield more useful information?

Everything we can do to SAFELY reduce the 4-dimensional extent of 
compliance monitoring / actions will recoup some of the science



US-EPA Class IV Impact on Research Projects
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Class VI Scale and Cost: DOE Regional Carbon Sequestration 
Partnership Phase II Program:
• Performed 20 injections
• 100s – 100,000 tonnes
• Wide variety of geologies
• Operated under Class V, Class II
• No extended PISC 
• No Financial assurance
• Careful site characterization
• Operational monitoring

How many could have been conducted 
under Class VI?
Data strongly suggests Class VI 
requirements are overly stringent for 
smaller injections.
Restricts valuable research and may 
incentivize undesirable behavior 
commercially



Synergy Opportunities
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• Stiff, thin reservoir zone could be good for 
studying geomechanical effects

• Danielson well has CO2 and water present 
– an opportunity to investigate corrosion 
issues, wellbore sealing with both fluids 
present

• GroundMetrics has performed background 
EM measurements at site



Summary
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• Well tests and core indicate dual permeability
• Modeling and well tests indicate fractures 

contribute strongly to overall permeability
• Modeling suggests very good injectivity
• Tests indicate very good mechanical properties 

for the caprock
• Joint inversion using shear wave seismic looks 

promising for imaging the Duperow porosity 
zone

• TDS in the middle Duperow is too low to get a 
UIC Class VI permit (even though high levels of 
H2S are present)
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Appendix

– These slides will not be discussed during the 
presentation, but are mandatory

87
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Benefit to the Program 
• Support industries' ability to predict CO2 storage capacity in geologic 

formations to within ±30%
 The project will correlate logs, core studies, seismic and modeling efforts 

with multiple iterations through all stages of the project to determine 
storage capacity in a fractured reservoir.  The project also tests storage 
in a regionally significant formation and in regionally significant structural 
closures that should refine regional capacity estimates.

• Develop and validate technologies to ensure 99 percent storage 
permanence.
 The project will use 3D, 9C surface seismic to characterize a fracture 

reservoir.



89

Benefit to the Program 
• Develop technologies to improve reservoir storage efficiency while 

ensuring containment effectiveness.
We are invstigating the influence of fractures on storagfe efficiency.

• Develop Best Practice Manuals for monitoring, verification, 
accounting, and assessment; site screening, selection and initial 
characterization; public outreach; well management activities; and 
risk analysis and simulation.
 BSCSP will use information from this project to contribute to best 

practices manuals.
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Project Overview:  Goals and Objectives

Primary objective - maximize the value of the existing Kevin Dome data to DOE’s 
Carbon Storage Program
Success Criteria – Data and analysis from the project fills knowledge gaps in the 
carbon storage project and assists other carbon storage efforts.

Detailed objectives:
• Complete the core descriptive work and core flood experiments to characterize the 

pore and fracture geometry of the Duperow formation; 
• Measure the fracture-permeability of evaporite and dolomite caprock; 
• Perform laboratory measurements of seismic properties as a function of CO2

saturation; 
• Perform laboratory measurements of fracture-matrix flow to inform modeling of 

two-phase flow in fractured carbonate reservoir rock;
• Complete seismic processing and interpretation including use of quantitative 

interpretation techniques to determine if pore fluid differences in the reservoir zone 
can be discerned spatially without time lapse techniques; 

• Apply full waveform inversion to develop a high resolution velocity model; 
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Project Overview:  Goals and Objectives

Detailed objectives (continued):
• Complete analysis of the geologic framework and stratigraphic architecture of the 

reservoir; 
• Produce a final geostatic model with descriptive metadata; 
• Improve phase change modeling using the BSCSP Danielson 33-17 well 

production data; 
• Further develop fracture–matrix permeability interaction models incorporating data 

previously mentioned; 
• Use the dual permeability model to refine large scale storage capacity estimates 

for fractured carbonate reservoirs; 
• Apply an integrated assessment model to Kevin Dome; 
• Process and analyze the surface monitoring data; 
• Modify assessments of regional and national storage resources with information 

gained through the Kevin Dome project; and 
• Capture lessons learned from the permitting, risk, and management components 

of the Kevin Dome project through continued analyses and the development of 
peer-reviewed publications and web-based applications for information sharing.
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Organization Chart
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Organization Chart
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Gantt Chart
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Gantt Chart
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