Detecting Small Leaks over Large Areas A New Way of Using Data

Project Number: FE-819-17-FY17

Youzuo Lin, Los Alamos National Laboratory Carbon Storage, Oil & Gas Technologies Review Meeting

AGENDA

- 1. Technical Status
- 2. Accomplishments to Date
- 3. Lessons Learned
- 4. Synergy Opportunities
- 5. Summary & Path Forward
- 6. Appendix

Technical Status

PROBLEM DESCRIPTION

WHY

An early assessment of CO_2 storage requires a technique capable of detection of small leaks in a large area without the need for extensive and expensive field datasets

CHALLENGES

- **Small** and useful events buried in noisy and **large-scale** datasets
- Efficient method is required to allow early detection
- Financially effective method

SOLUTION

- Data-Driven Methods
- Multi-Physics Surface/Subsurface Measurements

PAST & NEW DIRECTIONS

1300

Multi-Physics-Guided Data-Driven Methods

Machine Learning	Hybrid Method			
Improve Efficiency and Accuracy				
	Compensate Missing Info			
	Estimate Uncertainty			
Heuristics Based	Simulation Previous Projects 			

Data-Driven

- Data from Subsurface:
 - o Seismic
 - o Gravity
 - o Flow
 - o Pressure

• Data from Surface:

Unmanned Aerial Vehicle (UAV)
 2D Imagery

Physics Based

Advanced Seismic Imaging and Inversion Techniques Example of Previous Effort

Advanced Seismic Imaging and Inversion

- Novel full-waveform inversion
 and imaging methods for g 1
 active seismic data to obtain g 2
 subsurface fracture/fault zones
- Novel focal mechanism inversion methods to reveal CO2-injectioninduced microseismic events in () pre-existing fracture zones.

(b) LANL's novel anisotropic reverse-time migration imaging.

Physics-Guided CO₂ Leakage Detection Example of New Directions

CHALLENGES

- Expensive costs in acquiring data
- Limited information out of data
- Time consuming to interpret the data

SOLUTION Detect Leakage Signatures from Pressure Data

- Pressure data from limited number of sensors
- Data-driven hybrid approach (Machine Learning + FEHM)
- Dimensionality reduction

LANL Team: Youzuo Lin, Dylan Harp, Bailian Chen, Rajesh Pawar, and George Guthrie.

Accurate Estimation of Unknown Leaks

- We employ the above training data to train our supervised learning methods.
- \circ 500 unknown leak cases are created by varying the CO₂ injection rate.
- Prediction error is measured by Mean Absolute Error (MAE):

$$MAE = \frac{\sum_{i=1}^{n} |y_i^{gt} - y_i^{pred}|}{n}$$

- **Overall MAE** \approx **3** grid
- Detection error:
 - > within 1 grid point: **41.4%**
 - > within 2 grid points: **60.6%**
 - > within 3 grid points: **72.8%**

Other Research Efforts and Data Types

Real-Time Geologic Fault/Fracture Detection from Seismic Data

Surface Feature Detection from UAV Hyperspectral Imagery

RGB UAS IMAGE DEM SLOPE OTHER DATA

Permeability Estimation from Hydraulic Head Data

LANL Team: Youzuo Lin, Ellen Syracuse, Emily Schultz-Fellenz, David Coblentz, and George Guthrie. External Collaborators: Shusen Wang (UC, Berkeley), Jayaraman J. Thiagarajan (Center for Applied Scientific Computing, LLNL).

Accomplishments to Date

Hybrid Method to Estimate Uncertainty	Hybrid Method to Detect Small Events	Hybrid Method to Improve Efficiency & Accuracy	Hybrid Method to Compensate Missing Info
Leakage Detection and Risk Assessment	Microseismic Event Detection Using Deep Learning Method	Real-Time Geologic Surface/Subsurface Feature Detection	Learning-Based Hydraulic Inverse Modeling
LANL Team Youzuo Lin Dylan Harp Rajesh Pawar George Guthrie	LANL Team Youzuo Lin Paul Johnson David Coblentz External Collaborators Yue Wu (U. of Rochester) Ji Liu (U. of Rochester) Ming Yan (Michigan State)	LANL Team Youzuo Lin Ellen Syracuse Emily Schultz-Fellenz David Coblentz George Guthrie External Collaborators Shusen Wang (UC, Berkeley) Jayaraman Thiagarajan (LLNL)	LANL Team Youzuo Lin Daniel O'Malley Brendt Wohlberg Velimir V. Vesselinov

Lessons Learned

Lesson Learned

Lessons Learned

	Physics-Based	Machine Learning	Hybrid Method
Relevant Information	Х		Х
Computationally Efficient		Х	Х
Finacially Cheap		Х	Х

Risks and Challenges

- Useful training data sets to characterize the physics
- Seamless fusion of multi-physics data sets
- Small events buried among the noisy environment
- o Complexity of real world VS synthetic model: heterogeneity, scale,
- Early detection and warning

Synergy Opportunities

PROJECT TEAM

LANL Team

Youzuo Lin, Dylan Harp, Ting Chen, Lianjie Huang, Paul Johnson, David Coblentz, Rajesh Pawar, and George Guthrie

External Collaborators

University of Rochester Dept. of Computer Sciences	Yue Wu, Zhen Zhou, and Dr. Ji Liu
University of California, Berkeley Dept. of Statistics	Dr. Shusen Wang
Michigan State University Dept. of Computational Sciences	Dr. Ming Yan
Penn State University Dept. of Geosciences	David Chas Bolton
LLNL Center for Applied Scientific Computing	Jayaraman J. Thiagarajan

RESOURCES

Internal LANL Program Funding

LANL Center for Space and Earth Science (CSES) Projects

Pathfinder

Environmental Program

UNESE

Summary & Path Forward

SUMMARY

SUMMARY

- We have developed several seismic inversion and imaging techniques
- o The method has been applied to Aneth CO_2 -EOR field data
- Preliminary results to demonstrate the performance and feasibility of our hybrid machine learning methods

PATH FORWARD

Near Future

• Add more physics to our current model and flow data: 2D->3D, heterogeneity

Algorithms Development Based on Synthetic Data Test

• Develop machine learning algorithms based on synthetic models and data sets

Performance Evaluation Based on Field Data Test

- o Acquire field data sets
- Acquire other types of data sets

Thank you!

Benefit to the Program

- Our techniques can detect small signals out of large noisy data.
- Our techniques can extract useful information from different types of data sets.
- All these techniques will be critical to early detection of CO_2 leakage.

Project Overview

The task is exploring related strategies for applying this approach to detection of a subsurface leak out of large area. It will leverage a combination of multiple types of field data and subsurface emulators (which can rapidly reproduce detailed physics-based predictions).

Organization Chart

Gantt Chat

Bibliography

[1]. Youzuo Lin, Ellen B. Le, Daniel O'Malley, Velimir V. Vesselinov, and Tan Bui-Thanh, "Large-Scale Inverse Model Analyese Employing Fast Randomized Data Reduction", Water Resources Research, 2017 (accepted).

[2]. Youzuo Lin, and Lianjie Huang, "Building Subsurface Velocity Models with Sharp Interfaces Using Interface-Guided Seismic Full-Waveform Inversion", Pure and Applied Geophysics, 2017 (accepted).

[3]. Youzuo Lin and Lianjie Huang, "Acoustic- and Elastic-Waveform Inversion Using a Modified Total-Variation Regularization Scheme," Geophysical Journal International, 200 (1): 489-502, 2015

[4]. Youzuo Lin and Lianjie Huang, "Quantifying Subsurface Geophysical Properties Changes Using Double-difference Seismic-Waveform Inversion with a Modified Total-Variation Regularization Scheme," Geophysical Journal International, 203 (3): 2125-2149, doi:10.1093/gji/ggv429, 2015.

[5]. Youzuo Lin and Lianjie Huang, "Least-squares reverse-time migration with modified total-variation regularization," SEG Technical Program Expanded Abstracts 2015: 4264-4269.