Project ESD14089:

Numerical and Laboratory Investigations for Maximization of Production from Tight/Shale Oil Reservoirs: From Fundamental Studies to Technology Development and Evaluation

George Moridis, <u>Matthew Reagan</u>, Tim Kneafsey, Glenn Waychunas, Jonathan Ajo-Franklin, Sharon Borglin, Marco Voltolini, Alejandro Queiruga Lawrence Berkeley National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 1-3, 2017





# **Presentation Outline**

- Programmatic slides
  - Goals, Benefits
  - Project Overview
- Technical Status
  - Task List and Updates
  - Code Development
  - Reservoir Simulation Studies
  - Laboratory Studies
  - Molecular Simulation Studies
- Accomplishments to Date
- Appendix





# **Presentation Outline**

- Programmatic slides
  - Goals, Benefits
  - Project Overview
- Technical Status
  - Task List and Updates
  - Code Development
  - Reservoir Simulation Studies
  - Laboratory Studies
  - Molecular Simulation Studies
- Accomplishments to Date
- Appendix





# Benefit to the Program

**Goal:** Address critical gaps of knowledge of the characterization, basic subsurface science, and stimulation strategies for shale oil resources to enable efficient resource recovery from fewer, and less environmentally impactful wells

#### **Benefits:**

- Increases in production (from a very low base, 5%)
- Identify and evaluate development improvement strategies
- Increases in reserve estimates
- Enhanced energy security





### **Project Overview**: Goals and Objectives

- By using multi-scale laboratory investigations (nano- to core-scale) and numerical simulations (from molecular to field-scale) to:
- Identify and quantify the mechanisms involved in hydrocarbon production from such tight systems,
- Describe the thermodynamic state and overall behavior of fluids in the nanometer-scale pores of these tight media,
- Propose new methods for low-viscosity liquids production from tight/shale reservoirs
- Investigate a wide range of such strategies, and identify the promising ones to quantitatively evaluate their expected performance

#### Success criteria

- Develop methods to compare a number of possible light tight oil production methods
- Identify and compare a number of possible light tight oil production methods





# Gantt Chart

| Budget Period                                                                        | #1 |    |    |  | #2 |    |    |    |    |
|--------------------------------------------------------------------------------------|----|----|----|--|----|----|----|----|----|
| Quarter                                                                              | Q1 | Q2 | Q3 |  | Q4 | Q5 | Q6 | Q7 | Q8 |
| Task 1: Project Management and Planning                                              | M1 |    |    |  |    |    |    |    | M1 |
| Task 2: Continuation of evaluation of enhanced liquids recovery                      |    | M2 |    |  |    |    | М3 |    |    |
| Task 3: 3D Analysis and Modeling of the<br>Transport and Long-Term Fate of Proppants |    |    |    |  | M4 |    |    |    |    |
| Task 4: Multi-scale laboratory studies of system interactions                        |    |    | M5 |  |    | M6 |    |    |    |
| Task 5: Molecular simulation analysis of system<br>interactions                      |    |    |    |  | M7 |    |    |    |    |
|                                                                                      |    |    |    |  |    |    |    |    |    |

- Production simulation tasks and code development on or ahead of schedule
- Laboratory and molecular simulation tasks set up and underway

#### Budget: \$214.5K in FY2015, \$214.5K in FY2016 \$240K in FY2017, Proposed \$240K in FY2018.





#### **TASK 1: Project Management and Planning**

- Management strategy in place, technical team in place
  - PI: G. Moridis, Co-PI: M.T. Reagan
  - Lab studies: T. Kneafsey, S. Borglin
  - Visualization studies: J. Ajo-Franklin, M. Voltolini
  - MFD studies: G. Waychunas
  - Simulation and code development: G. Moridis, A. Queiruga, M. Reagan

#### Status: COMPLETED & ONGOING





#### **TASK 2:** Continued Evaluation of Enhanced Recovery

**FY15-16:** Tasks 2, 3, 4, 7, 8

Define the feasibility parameters, the specific objectives and metrics of the screening study. Then, evaluate recovery strategies accounting for all known system interactions

Status: COMPLETED

**Success**: predicted increase by >50% in production/recovery over a 3-5 year period (or economic viability of well)

**Phase II**: ongoing simulation tasks continue as Task 2





#### **TASK 2:** Continued Evaluation of Enhanced Recovery

Continue to evaluate recovery strategies accounting for all known system interactions.

#### Previous FY15-16 work examined displacement processes:

- Traditional continuous gas flooding (i.e. natural gas) using parallel horizontal wells
- Water-alternating-gas (WAG) flooding (poor)
- Added  $CO_2$  properties modules  $\rightarrow CO_2$  injection





#### **TASK 2:** Continued Evaluation of Enhanced Recovery

Continue to evaluate recovery strategies accounting for all known system interactions.

**Current FY17-18 work examines additional processes** 

- Updated thermophysical properties and PVT relationships using previous laboratory results
- **Examination of additional injection fluids** (CO<sub>2</sub> vs. N2 vs. CH<sub>4</sub>) for viscosity reduction via gas dissolution
- Further examination of the effect of **secondary and native** fractures
- Further simulation of heavier, more complex oil phases (C14+, API 36-39)
- Thermal processes, viscosity reduction caused by heating
- Extensive code updates, upgrades, and enhancements





#### TOUGH+MultiComponentPhase (T+MCP) Code

- Conventional and tight/shale oil (heavy) simulations, CO<sub>2</sub> enhanced oil recovery, CH<sub>4</sub>- and CO<sub>2</sub>-hydrate formation
- Fully compositional simulator
- Oil, H<sub>2</sub>O
- Salt(s)
- Up to 11 gas components ( $C_{1-3}$ ,  $CO_2$ ,  $N_2$ ,  $H_2$ , etc.)
- Fully non-isothermal
- Enhanced oil physical properties relationships (viscosity)
- Maximum 15 equations/element, 100,000s of elements in 3D
- Massively parallel capabilities (features merged with pTOUGH+)





### **Types of fractured systems**



### **SHALE OIL PRODUCTION: Domain stencil**



 $X_{max}/2 = 15 \text{ m} (49 \text{ ft})$ 

## Extremely fine discretization

370,000 elements with no- and Type I fractures; 740,000 elements with Types II to IV fractures

















#### **HOWEVER:**

- Anecdotal evidence that CH<sub>4</sub>/C<sub>2</sub>H<sub>6</sub> mixture more effective in shale oil recovery
- (Super) Light (C8-C14) vs. heavier oil (C14+)?
- Repeating simulations with an oil with an API gravity of 36-39 (CH<sub>4</sub> vs.  $CO_2$ ) in Q3/Q4
- Currently, the effect of the CH<sub>4</sub>/C<sub>2</sub>H<sub>6</sub> is unknown; laboratory studies may clarify





### Future Work – Task 2

Work in Budget Period #2 will complete the work described in the SOW.

- Completion of simulations of production enhancement methods for fractured systems, with a focus on:
  - 1) Displacement processes,
  - 2) Gas drives/flooding,
  - 3) Viscosity reduction, and
  - 4) Combined/interacting processes
- Increased complexity/gravity of the oil phase
- Relative effectiveness of CH<sub>4</sub>, CO<sub>2</sub>, and other injected species
- Completion of documentation of all techniques shown to be inefficient or impractical





# **TASK 3:** 3D Analysis and Modeling of the Transport and Long-Term Fate of Proppants

- Develop (from first principles) a 2D/3D numerical model of fluid flow and proppant transport
- Analyze the effect of stresses on the embedment of the proppants into the matrix
- Incorporate elements of the numerical models into TOUGH+ (MCP, RGB)
- Perform simulations capturing the *PVT* behavior of fluids in shales during hydraulic fracturing operations
- Determine the transport and fate of injected proppants and resulting geomechanical behavior

Status: AHEAD OF SCHEDULE





### Fracture Transport Model – Task 3

#### **Designing a new Numerical Model:**

- Solve transport along fracture network during hydraulic fracturing process
- Capture fluid lag behind fracture tip
- Mass conservation approach to proppants
- 2D Finite Element Method

Simplify down to a 2D plane assuming:

- Fully developed thin-film flow
- Stokes drag
- Uniformly distributed proppants



• Fracture height given from a coupled mechanics code (STONE)







### **Preliminary Simulations – Task 3**





Proppant-laden fluid injection into a vertically oriented 10m fracture, color indicating pressure. Fluid interface is the 0-contour (thick line)



Proppant-laden fluid injection into a horizontally oriented 10m fracture, color indicating proppant density. Fluid interface is the thick line.



### Upcoming Work – Task 3

#### Work for BP #2:

- 1. Include mechanics and fracture propagation into levelset FEM model
- 2. Couple 2D fracture model to the 3D transport+mechanics codes
- 3. Embed fractures in 3D space and handle **branching and intersections**
- 4. Incorporate elements of the numerical models into **TOUGH+(MCP)**
- 5. Perform coupled simulations and assess the transport and fate of injected proppants and resulting geomechanical behavior





#### **TASK 4:** Multi-scale laboratory studies of system interactions Subtask 4.1: Sub-Microscopic-Scale Visualization Studies

#### **Objectives**

• To understand the role of proppants in the evolution of a fracture

#### Proppant in a fracture can control the evolution of a fracture, e.g.:

- Embedment: in a plastic rock, the proppant can embed on the surface of the fracture and being inefficient at keeping it open
- Breakage of the rock: in a brittle/fragile rock proppant can induce breaking, with fines generation (clogging issues) and decrease of the aperture of the fracture
- Breakage of proppant: a strong/rigid rock can induce breakage of the proppant grains, again with fines generation (clogging issues) and decrease of the aperture of the fracture.



Status: IN PROGRESS



### Preliminary Test – Task 4

**Preliminary Result:** a combination of both proppant and rock breakage during unconfined compression (progressive increase in axial load) in a relatively brittle Mancos Shale sample:



How this changes with rock composition and texture?





### ALS In Situ Experiment – Task 4

Plan for the experiment on July 28<sup>th</sup>-29<sup>th</sup> at the Advanced Light Source.





- A mini-triaxial cell will be used, thus allowing setting a confining pressure
- Axial pressure is independently set and increased in steps.





#### **Expected Outcomes – Task 4**

- We will learn about the evolution of the fracture (volume changes, aperture evolution, flow properties evolution, characterization of microfractures, deformation, etc.)
- Use the 4D datasets to **model** flow properties of the fractures during closure
- Local strain quantification
- We can **generalize the observed behaviors** to find e.g. how much clay is needed to have more plastic embedment instead of more brittle breakage, or the load needed to induce close the fractures in different scenarios.





**TASK 4:** Multi-scale laboratory studies of system interactions Subtask 4.2: Laboratory-Scale Studies

#### **Objectives**

- Investigate and quantify differences in possible light tight oil (LTO) EOR techniques suggested by numerical investigation
- Provide **feedback** to simulations
- **Directly observe** proppant transport in variable aperture fractures









#### Depressurization



#### Fluid dissolution into oil







#### Depressurization with gas



#### Dissolution with depressurization



Imbibition/Osmotic







### Improved System for Process Eval.– Task 4







### Summary – Task 4

#### $scCO_2 > CH_4 > N_2 > He$ , but water was best. $CO_2$ mass injected >> other gases







### Highlights – Task 4

- Built 2 high-pressure process evaluation test rigs
- Performed 62 tests to evaluate gas dissolution, depressurization, and imbibition
- $scCO_2 > CH_4 > N_2 > He$ , but water was best
- CO<sub>2</sub> mass injected >> other gases

#### Next:

- Osmotic displacement (imbibition driven by water activity differences)
- Anisotropic/heterogeneous wetting media
- Sensible technique combinations (avoid permeability jails)
- Proppant transport in fractures and corners (Task 3)





#### **TASK 5:** Molecular Simulation Analysis of Pore-Scale Interactions

#### **FY15-16 Accomplishments**

- Constructed basic pore simulation system
- Conducted simulations involving flow of water, water plus alkanes, water plus carboxylic acids, and water plus multiple species

#### **Results:**

- Characterized differences in the nature of the surface interactions with each species separately
- Characterized surface interactions when species are mixed
- In particular, carboxylic acids appear to help bind alkanes to the pore edge surfaces
- We expect similar effects with substituted alkanes, such as carboxylic, amino, hydroxyl and other functional groups that have some hydrophilic character.





#### FY17 Objectives (BP #1)

- Generate larger model clay pore with appropriate terminations and surface protonations
- Recalibrate earlier simulations to larger scale frame

#### FY18 Objectives (BP #2)

- Flow simulations for small clay pore model, then extension to **60,000 molecule frame**
- **Comparison of results with imaging** via electron microscopy (as available) on the 2-5 nm scale
- Compare earlier results with larger pore model
- Examine behavior of less soluble alkanes with carboxylic acids
- Examine molecular behavior with high organic content fluid







### **Molecular Simulations – Task 5**

#### New pore model 6x number of atoms



6x6x6 clay cell model with 3 x 3 x 2 nm pore used in past simulations with reactive fluids ca. 10,000 atoms (uses periodic boundary conditions); protonation determined by contemporary analyses of surface charge behavior (e.g. Bickmore)

Proposed next model with 3 x 18 x 2 nm pore ca. 60,000 atoms





### Future Work – Task 5

#### **Goal: Comparing actual pores with simulations**



Early work at Molecular Foundry featured Au-Ag nanoparticles; initial studies on clay materials have been attempted

> Ptychography tomography used to image 3D structure of Silicon chip at the individual transistor level (14 nm resolution)



#### X-ray Ptychography

requires coherent synchrotron source
can measure *in situ*resolution potentially on nm scale with complete chemical (element) sensitivity
could distinguish among different types of carbon (e.g. –CH, -COOH, -CS)



Holler et al Nature 2017



### Accomplishments to Date

- Development and testing of T+MCMP: shale oil/gas all-purpose simulator
- Evaluation of production enhancement via:
  - Gas injection (multiple species)
  - Viscosity reduction
  - Thermal enhancement
  - Fracture extent/type
- Development of new **proppant transport** model and code
- **Construction** of 2 high-pressure process evaluation test rigs
  - Performed 62 tests to evaluate gas dissolution, depressurization, and imbibition
- Prepared for ALS visualization of cracks and proppants under confining pressure
- First MD/MFD simulations of molecular/pore-scale surface phenomena





# Synergy Opportunities

- Phase II objectives include collaboration goals with other NETL-funded work
- Clear synergies are apparent in approaches, measurements, and analysis of data among similar project themes
- Comparisons of results obtained using the various approaches builds confidence in the results and the program





# Appendix





# **Organization Chart**







### **Technical Status: Phase I Milestones**

| MI                                              | LESTONES                     |                |
|-------------------------------------------------|------------------------------|----------------|
| TASK Title/Description                          | Planned Completion Date      | Verification   |
|                                                 | (after project inception)    | Method         |
| Task 2: Definition of metrics and               | 3 months (Budget Period #1)  | Topical Report |
| methodology for screening production strategies | ISE                          |                |
| Task 3: Evaluation of enhanced liquids          | 7 months (Budget Period #1)  | Topical Report |
| recovery using displacement processes           |                              |                |
| Task 4: Evaluation of enhanced liquids          | 9 months (Budget Period #1)  | Topical Report |
| recovery by means of viscosity reduction        |                              |                |
| Task 5: Multi-scale laboratory studies of       | 17 months (Budget Period #2) | Topical Report |
| system interactions                             |                              |                |
| Task 6: Molecular simulation analysis of        | 13 months (Budget Period #2) | Topical Report |
| system interactions                             |                              |                |
| Task 7: Evaluation of enhanced liquids          | 18 months (Budget Period #2) | Topical Report |
| recovery by means of increased                  |                              |                |
| reservoir stimulation, well design and          |                              |                |
| well operation scheduling                       |                              |                |
| Task 8: Evaluation of combination               | 18 months (Budget Period #2) | Topical Report |
| methods and of new strategies                   |                              |                |





### Tasks & Milestones

| MILESTONES                                                                                                                                               |                                                      |                                                                                                                 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| Title/Description                                                                                                                                        | Planned Completion Date<br>(after project inception) | Verification Method                                                                                             |  |  |  |
| M1: Task 1: Project Management and Planning                                                                                                              | 1 month and 24 months<br>(Budget Periods #1 & 2)     | PMP and regular reports                                                                                         |  |  |  |
| <b>M2:</b> Documentation of techniques indicated to be inefficient or impractical (Task 2)                                                               | 6 months (Budget Period #1)                          | Report documenting<br>inefficient production<br>techniques                                                      |  |  |  |
| M3: Development of a compendium of<br>appropriate production strategies and their<br>respective effectiveness (Task 2)                                   | 18 months (Budget Period #2)                         | Draft of compendium                                                                                             |  |  |  |
| M4: Deployment of the enhanced TOUGH+<br>simulator with proppant-modeling capability<br>(Task 3)                                                         | 12 months (Budget Period #1)                         | Completion of<br>simulations<br>demonstrating the<br>capabilities of the<br>code, including<br>validation runs. |  |  |  |
| <b>M5:</b> Completion of tests evaluating the comparative effectiveness of water and scCO2 injection on LTO recovery (Task 4)                            | 9 months (Budget Period #1)                          | Completion of<br>experiments,<br>description of<br>comparative<br>effectiveness.                                |  |  |  |
| M6: Completion of proppant transport<br>apparatus and initial observations of proppant<br>distribution (Task 4)                                          | 15 months (Budget Period #2)                         | Report documenting<br>the apparatus, and<br>results of initial<br>observations of<br>proppant distribution.     |  |  |  |
| <b>M7:</b> Determination of geometry and character of clay mineral grain surface-fluid molecular attachments and flow for basal and edge planes (Task 5) | 12 months (Budget Period #1)                         | Successful<br>completion of<br>simulations using<br>new molecular<br>models.                                    |  |  |  |



