Monitoring of Geological CO₂ Sequestration Using Isotopes and Perfluorocarbon Tracers Project Number FEAA-045

Joachim Moortgat³ Team: D. E. Graham¹, S. M. Pfiffner², T. J. Phelps², D. R. Cole³, R. Soltanian³

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation, Partnership and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 1-3, 2017

Presentation Outline

- Benefits to program
- Perfluorocarbon tracer (PFT) analyses
- Reservoir simulations for CO₂ & tracers
- Conclusions
- Future work & Synergies
- Appendix

Modified from slideshare.net/globalccs/cranfield-large-scale-co2-injection-usa

Introduced by Susan Hovorka this morning.

Conservative Perfluorocarbon Tracers (PFTs)

- Non-reactive, non-toxic, inexpensive & stable to 500°C
- Detectable at pg-fg levels
- Several PFTs can be quantified in a single analysis
- Different PFT "suites" (PMCP, PMCH, PECH, PDCH, PTCH), and SF₆, assess multiple breakthroughs → indicator of evolving flow regimes and plume growth

Benefit to Program

Use tracers to monitor & validate (99%) CO₂ storage permanence

New subsurface signal to monitor physical & chemical processes affecting storage efficiency:

- Alter porosity & permeability, e.g., fracturing (SubTER)
- Control fluid flow, e.g., diffusion, mixing, advection, capillarity, and reaction

Equally applicable to EOR and geothermal.

Complimentary tool to traditional geophysics.

Modified from NETL Carbon Storage GSRA **Technology Research Areas Illustration**

4

Hydrocarbons may have a small to insignificant effect on PFT analysis by direct injection GC-ECD

- How does a hydrocarbon-rich sample matrix affect PFT sorption and analysis?
- PFT standards diluted in 3 matrices: CO_2 , natural gas, and CO_2 and diesel liquids.

No change in retention times or baseline No significant difference in detecting pmole (ng) quantities of PFTs in 3 matrices noise during analysis of 20-30 fmoles (5-10 pg) of each PFT in 3 matrices CO_2 1×10⁻¹¹ detected (moles / 50 µL) Natural Gas 8×10⁻¹² 3000-Diesel 6×10⁻¹²-2000-4×10⁻¹²-Natural gas 2×10 1000-Diesel E CO_2 owich 0-15 20 10

PFTs diluted in standard gas matrices

RESERVOIR MODELING & INTERPRETATION OF PFT FIELD DATA

Cranfield, SW Mississippi, near Natchez Detailed Area of Study (DAS)

Thanks to:

- Hovorka & Hosseini @UTBEG
- LBNL, SECARB
- Sandia Technology
- Denbury Resources

Extracted from > 60 million element model by UTBEG Hosseini et al., *IJGCC* (2013)

- 155 × 195 × 24 m³, inclined in *x* and *y*
- 64 × 51 × 79 = 257,856 unstructured grid cells,
- F2 and F3 well locations from *Ajo-Franklin et al., *IJGGC*, 2013
- Petro-physical properties for 8 facies

Permeability

channels & tight shales

Osures Reservoir Simulator

- Higher-order finite elements for flow and transport • EOS-based phase-split computations, also for tracers
- Cubic-Plus-Association (CPA) EOS for water-CO₂ mixtures
- Fickian diffusion, mechanical dispersion, capillarity • Brooks-Corey relative permeabilities with $S_{wir} = 40\%$ (or 60%)
- No-flow top and bottom (shale), constant p on outflow boundaries

Injection Schedule

Data from UTBEG

2010 campaign

(also PECH, PDCH, PTCH, and SF₆)

10

F1 BHP (bar)

11

2010 Campaign

Cumulative CO₂ Time = 161.5 days

x(m)

PMCH injected again at 161 days Time = 161.5 days 150 F3 100 y(m) 50 F1 n 150 50 100 0 x(m)

40 Z(M) 20 150 50 100 0 y(m) **PMCH** mole fraction:

0.22 0.25

1E-09

1E-08

2010 Campaign

'New' CO₂

0.22 0.25

1E-09

2009-2010 Breakthrough Curves **PMCH Tracer**

PMCP Tracer

Only 2010 Campaign Breakthrough Curves PMCH Tracer

Simulated molar density

denotes injection

PMCP Tracer

Fracturing?

Breakthrough Curves vs. Location of F2 and F3

•	F2 and F3 placed at same distances		1.50E-04
	from F1, but different lateral locations, i.e. in different fluvial channels	(moles/m3)	1.00E-04
•	Tailing/dilution highly variable	density	
		lolar	5.00E-05
•	Heterogeneity critical (also observed in Farnsworth Unit by Balch & McPherson's talk on Tuesday)	2	0.00E+00
			1.50E-04
		nsity (moles/m3)	1.00E-04
		ar de	5.00E-05

Ř

Conclusions

- 2016: Excellent match of pressure response and CO₂ breakthrough times
- Simulations match PFT field data remarkably well over short time-scales
- Larger discrepancy at later times due to the growing complexity of developing flow paths. Preliminary simulations could inform sampling times/duration.
- Tracer BTCs & simulations can constrain static reservoir properties (e.g., distribution of fluvial depositional features) and dynamic physical processes (e.g., advection, diffusion, viscous & gravitational fingering)
- Powerful tool to interrogate the subsurface in-situ. Complimentary to initial geophysical characterization, but also allowing *continuous* monitoring in time

Future Plans & Synergy

Modeling:

- Chemical trapping: Incorporate water-rock reactions in collaboration with NETL, validated through experimental facilities at NETL and field data.
- Solubility trapping: dissolution, mixing, spreading of injected CO_2 .
- Capillary trapping: capillary snap-off and hysteresis trapping.
- Competitive dissolution/exsolution of CO_2 in methane saturated brine.

Report on efficacy of sorbents to improve PFT capture and analysis. Coordination with NETL staff to compare methodologies and identify best practices for PFT analysis.

Synergistic opportunities not just in CSS, but also EOR, UOG, geothermal field development.

Evaluate effects of hydrocarbon-rich matrices on PFT capture and quantification in gas samples.

Bibliography 2016-2017

- 1. Soltanian, M.R., Amooie, M.A., Gershenzon, N., Dai, Z., Ritzi, R., Xiong F., Cole, D.R., and Moortgat, J., Dissolution Trapping of Carbon Dioxide in Heterogeneous Aquifers, Environmental Science and Technology (2017), 51(13), 7732–7741.
- Convective Mixing in Geological Carbon Sequestration. Scientific Reports (2016), 6, 35921. S.M., Phelps, T.J., Moortgat, J., Simulating the Cranfield Geological Carbon Sequestration Project with High-Resolution Static Models and an Accurate Equation of State, Int. J. of Greenhouse Gas Control (2016), 54(1), 282–296.
- 2. Soltanian M.R., Amooie, M.A., Dai, Z., Cole, D., and Moortgat, J., Critical Dynamics of Gravito-3. Soltanian M.R., Amooie, M.A., Cole, D.R., Graham, D.E., Hosseini, S.A., Hovorka, S., Pfiffner,
- 4. Amooie, M.A., Soltanian, M.R., Moortgat, J., Hydro-Thermodynamic Mixing of Fluids Across Phases in Porous Media. Geophysical Research Letters (2017), 44(8), 3624-3634.
- 5. Amooie, M.A., Soltanian, M.R., Xiong, F., Dai, Z., Moortgat, J., Mixing and Spreading of Multiphase Fluids in Heterogeneous Bimodal Porous Media, Geomechanics and Geophysics for Geo-Energy and Geo-Resources (2017), 3(3), 225-244.
- 6. Soltanian, M.R., Amooie, M.A., Cole, D.R., Graham, D., Pfiffner, S., Phelps, T., and Moortgat, J., Transport of Perfluorocarbon Tracers in the Cranfield Geological Carbon Sequestration Project (2017). In review.

Injected mass, injection schedule, observed, and simulated Breakthrough times

2009 campaign

	Injected		Breakthrough time (davs)						
	injected		Obse	rved	Simul	Simulated			
	Mass (kg)	Time (days)	F2	F3	F2	F3			
CO2		0	1	16	<mark>9-13</mark>	21-26			
PMCP	0.6	3.125	3.7	15.6	11	23.2			
PMCH	1.1	0	1.6	17.2	10	23.2			
	0.6	11.2		23.7	-	31			
PECH	0.6	1.3	1.4	15.6	10.2	23.2			
	0.6	3.125		17.0	-	31.5			
PTCH	1.1	0.25	1.1	16.5	10.4	23.5			
	0.6	18.5		29.6	-	29			
SF6	40.4	2.5	2.0	14.8	10.8	23.2			

2010 campaign

	Injected		Breakthrough time (days)					
	Injected		Observ	ved	Simula	Simulated		
	Mass (kg)	Time (days)	F2	F3	F2	F3		
PMCP	1.4	132.6	148.8	145.9	139.5	145.5		
PMCH	1.0	161.5		168.5	165.5	170.5		
PECH	1.3	132.7	146.3	145.5	139	144.5		
	0.5	134.7		-	142	165.0		
PTCH	1	161.5		168.5	165.5	170		
SF6	31.75	135	153.1	147.0	141	147		

Residual Brine Saturation

F2

Appendix

Benefit to Program

Use tracers to monitor & validate (99%) CO₂ storage permanence

New subsurface signal to monitor physical & chemical processes that can affect storage efficiency:

- Alter porosity & permeability, e.g., fracturing (SubTer)
- Control fluid flow, e.g., diffusion, mixing, advection, capillarity, and reaction

Couple tracers with reservoir modeling to predict storage capacity & effectiveness, aid future site selection & characterization.

Technology Research Areas Illustration

Project Overview

Develop complementary tracer methods to interrogate sub-surface for improved CO₂ storage efficiency & permanence

- Geochemical and PFT analysis from 5-year Cranfield, MS storage project
- Improved ultra-trace detection methods for PFT mixtures, improving sensitivity for leakage testing, and allowing large-scale field deployment
- Investigate potential effect of hydrocarbon matrix on PFT detection
- Integrate geochemical, isotope and PFT results into an advanced reservoir simulator for improved predictions
 - Step 1 (2016): Develop high-resolution petrophysical model & reproduce earlier simulations for pressure & CO₂
 - Step 2 (2017): Incorporate tracer data in simulations
 - Step 3 (2018): Incorporate reactions and study chemical, solubility, and capillary trapping.
- Transfer technology to storage project partners

Project Organization

GE

National Laboratory

David Cole Reza Soltanian Joachim Moortgat

NETL

Gantt Chart

	Milestone Description*								
Task		Fiscal Year 2017				Fiscal Year 2018			
			Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Preliminary simulation of perfluorocarbon								
1.1	and SF6 tracers								
	Preliminary report on efficacy and								
	operating parameters of GC systems for								
3.2	PFT analysis in hydrocarbon-rich matrices								
	Combined simulation of CO2 and tracer								
	injection experiments, as well as methane								
1.2, 1.3	evolution, for Cranfield DAS site								
	Prioritization of reactive transport								
	processes for simulation from discussions								
1.5	with NETL researchers								
	Acquisition and installation of thermal								
	desorption and cooled injection system								
3.1	hardware								
	Universal dynamics of gravito-convective								
	mixing of CO2 in 3D heterogeneous								
	porous media and implications for								
1.7	geological carbon sequestration								
	Initial incorporation of geochemical								
	reactions and stable isotope tracers into								
1.4	the Osures reservoir simulator								
	Report on efficacy of sorbents to improve								
3.3	PFT capture and analysis								
	Detailed model of trapping mechanisms								
	that guarantee the long-term permanence								
1.6	of injected CO2								

Accomplishments and Benefits to Program

- Accomplishments
- Assessing water-mineral-CO₂ interactions using geochemical modeling and isotopic signatures in baseline, during and post injection for multiple sites and campaigns.
- Determine behavior of perfluorocarbon tracer suites, breakthrough, development of reservoir storage over time at multiple sites.
- Delineate CO₂ fronts with PFT's, isotopes and on-line sensors (T, pH, Cond.).
- Established methods, proven successful, inexpensive, ongoing collaborations.
- Developed high-resolution Cranfield model to investigate CO₂ and tracer transport
- Procedures for monitoring, verification and accounting (MVA) as tech transfer for larger sequestration demonstrations complementing other sites/partnerships.
- Established, successful, inexpensive, Technology Transfer collaborations.
- Publications: 17 journal/book articles, a dozen proceedings papers.
- Education: 4 Students and 2 postgraduates.

Lessons Learned

- advective flow. Wettability/rel. perms. for multiple facies should be known.
- Continuously improving characterization of formation heterogeneity is paramount. Tracers can help:
 - Breakthrough curves (BTC) can be used in history matching.
 - BTCs vs. depth, if feasible, can improve characterization of layering.
- closer ones, as also observed in the Farnsworth Unit, SW-RPCS.
- \bullet Simulations can help predict necessary sampling periods.

• Relative permeability parameters (e.g. S_{wir}) determined in lab for one (type of) core may not be applicable to all heterogeneous facies in reservoir, but critically affect predicted

Complex channels can result in CO₂/tracers arriving in far observation wells before

Monitoring of BTCs should start early and continue long enough to measure tails.

Upscaled simulations predict much later breakthrough times than observed. Our fine grid simulations, though CPU expensive, accurately predict CO_2 and tracer BTCs.

