Rugged Fiber Optic Downhole Sensor for Monitoring CO, in Brine

Richard T. Wainner, Nicholas F. Aubut, Joy G. Stafford, and Michael B. Frish

Physical Sciences Inc.

20 New England **Business Center**, Andover, MA 01810

Solar Panel

Nell Bore

Fiber Cable

Well Head

Porous

Sheath

Path

Sample

Analyte Fluid

Sampling

Chamber

Sensor Pod

Who we are

- A growing 45 year-old company of ~180 talented scientists, engineers and administrative personnel
- Headquartered in Andover, MA, with eight satellite locations in the U.S.
- Three wholly-owned subsidiaries, Q-Peak, Research Support Instruments, Faraday Technology, with complementary capabilities
- A technologically diverse research and development organization with revenues over \$50M
- Employee-owned through an Employee Stock Ownership Trust

What we do

- Applied contract research and development for all major agencies of the U.S. government
- Technology development under contract to both industry and government
- Prototype product development for industry and commercial applications
- Components, systems, and instrumentation for industry and government sales
- Technology and product licensing

PSI Industrial Sensors

Interdisciplinary combination of science and engineering skills with specific strengths in development and commercialization of photonic sensors and instrumentation

Engineering Alpha Prototype (AP) Design

- Passive optical probe head with porous outer sheath
- Few cm fiber-optically coupled path (fixed alignment)
- Rugged fiber cable with delivery and return fiber
- Electronics at surface in shoe box-sized Control Unit connected to PC for R&D or telemetry hardware for autonomous operation
- Strategy: The very broad spectral width of the liquid CO_2 feature (~6nm FWHM) motivates a novel laser tuning approach that ideally has ~12nm of wavelength tuning (standard TDLAS approach = 0.25nm)

Downhole Fluids Sensor (DFS) Alpha Prototype sensor head

Early Benchtop Test Results -**Direct CO₂ Absorbance**

Lock-in Detection Simulation (CO₂ & H₂O Contributions)

- 2f/1f ratio is independent of total light returned - 2f is proportional to analyte-induced absorption
- (either CO_2 or H_2O)
- Both 2f and 1f are proportional to total laser light returned
- Across the wavelength range being scanned, the water

- Product development from concept to manufacturing prototype
- Go to market via direct sales, strategic partnerships, pilot scale manufacturing, and licensing

Abstract – Downhole Fluids Sensor (DFS)

Developing strong interactions with the oil & gas and broader energy industries since 1994

Multiple Sensors

per Well? <

lell Seals to Prevent Cross Contamination

sions," Oilfield Review, p.36-48, Winter 2012-2013)

depths with single cable

monitoring interval (AZMI))

- 500 laser wavelength steps per period at ~5Hz = 100sec sweeps
- Compare signals through empty 5cm cell (green) and with 1000psi CO₂ (red).
- Absorbance = 1.5 for pure CO_2 (\rightarrow A=0.3 for 1cm path)
- Potential detection limit: 0.1% CO₂ (A=3x10⁻⁴ for 1cm path)

absorption feature has a curvature that also (like CO_2) generates a 2f signal contribution, along with the very strong total (dc) signal attenuation

• Goal: Detect $3x10^{-4}$ scale (0.1%) CO₂ signature in the presence of $0.18 H_2O$ signature

Software Lock-in Simulation with **AP-Measured Noise Levels Added**

• Measure ~15hrs data in water with 0.5" path AP DFS probe

• RMS drift/noise contribution to $2f/1f = 7.3x10^{-4}$ - Equivalent to $\sim 0.2\%$ CO₂

Laser-based Sensors for GCS MVA and Safety

PSI is developing a sensor, based on tunable diode laser

autonomous in situ measurement of fluids within and around

sequestration reservoirs for CO₂ content. The fluid interrogation

is accomplished via a passive optical sensor head at depth that

is coupled to the laser at the surface (well head) via an optical

laboratory results. The sensor supports geological carbon

fiber. A field test prototype design is presented, along with initial

sequestration (GCS) monitoring, verification, and accountability

(MVA) needs for detecting and characterizing leakage from GCS

sites at all depths. A suite of downhole sensors can also help

advance the science of GCS fluid transport modeling by

monitoring CO₂ plume progress cost effectively with speed,

sensitivity, and chemical selectivity to supplement current

techniques of seismic mapping and pulsed neutron decay.

absorption spectroscopy (TDLAS), for continuous and

DFS Concept of Operations

Laser Drive/

Leak

Monitoring

 CO_2

Collimators

Cap Rock

Plume

Monitoring

Leakage

Signal Processor

(left) Multi-horizon plume monitoring in reservoir monitoring well. (right) Leak monitoring in AZMI in (left) dedicated small-bore well or (right) outside casing of reservoir monitor well. (well section schematics adapted from Alvi, et al. "CO2 Emissions – One Response to

• Deployed in reservoir monitor well at potentially multiple

• Deployed in porous "leak-monitoring" layer (above-zone

Alpha Prototype (AP) Lab Tests

- AP DFS unit to be tested at Schlumberger-Doll Research labs
- Simple pressure vessel (right) employed to access pure H₂O (brine), pure CO₂, and CO_2 – saturated H_2O conditions – To 130atm and 75°C

• Open-path CO₂ gas sensors (red) (and below)

- Handheld / mobile leak survey tools (and below)
- Shallow in-ground CO₂ gas point sensors (blue)
- Well-depth supercritical CO₂ sensors (green) (this project)

Measurement Principles

- TDLAS can be used to measure concentrations of CO₂ in any fluid phase. Carbon dioxide absorbs infrared light in specific wavelength bands (ro-vibrational transitions). A modulated laser diode current results in intensity and wavelength modulation. The diode wavelength modulation is generally centered on a CO₂ absorption feature that is away from the absorption bands of interfering molecules. The figure right left illustrates absorbance (A) spectra for pure high pressure gaseous and liquid CO_2 for a 50mm optical path ($A_{CO_2} = 0.8$) through the fluid at the wavelength region of interest for this work. [Optical transmission $T = I/I_0 = e^{-A}$]
- In the presence of water (a very strong broadband absorber at these wavelengths) increasing H₂O will induce an additional attenuation up to 6 dB in magnitude (right bottom). This is still a suitable return power fraction (nW) to detect the dissolved CO_2 at 0.1% scale or lower.

- Verify CO₂ detection limit
- AP head is baseline design for Beta (field test) Prototype, to incorporate km-scale rugged fiber cable and embedded automatic gain detection system

Beta Prototype (BP) Field Tests

- Carbon Management Canada (CRC) Containment and Monitoring Institute (CaMI) - Priddis well (near Calgary) is a closed foot system with coiled tubing integrated to inject CO₂ at the bottom, to relevant pressures (>3000psi)
 - FRS#1 site (more remote) has medium depth injection wells and nearby monitoring wells
- 2-3 days of field testing, focused on deployability, functionality, and performance

Extension Applications

• Enhanced oil recovery (EOR) – plume monitoring, multi-horizon

hydraulic fracturing – plume, leak, and production path monitoring

Factory supercritical CO₂ applications (solvent, refrigerant, reagent...)

- Rapid CO₂ expansion for microparticulation (pharma & more)

- CO₂ as extracting solvent (coffee decaffeination, botanical oils...)

on/off production and phase control, broadband NIR optical

• Enhanced (natural) gas recovery (EGR) and CO₂-based

fluid analysis...

Logging while drilling

Monitoring natural CO₂ reservoirs

Conclusions

- Supercritical CO₂ spectral signatures observed with telecom diode laser with ultrawide wavelength modulation
- Passive (mechanical) fiber alignment scheme tested and yields good coupling, even to 50°C
- Detection limits for a 0.5 inch path estimated at ~0.2% CO₂
- Engineering Alpha prototype (AP) is designed and fabricated
 - Explore broadly tunable laser for ~2x sensitivity $gain.(~0.1\% CO_2)$
 - Immersed probe head to be lab tested Fall 2017

Acknowledgments

This material is based upon work supported by the Department of Energy under Award Number DE-SC0011876

Disclaimer

Contact

Dr. Michael B. (Mickey) Frish Manager, Industrial Sensors

Physical Sciences Inc.

9030 Monroe Road

Houston, TX 77061

frish@psicorp.com

(978) 738-8252

Dr. Richard T. Wainner Principal Research Scientist Physical Sciences Inc. 20 New England Business Center Andover, MA 01810 (978) 738-8142 wainner@psicorp.com

Signal (V) 100MΩ, 10×1

