2016 University Turbine Systems Research Workshop Co-organized by DOE NETL and Virginia Tech 1-3 November 2016

RANS and LES of Turbine Heat Transfer

Tom I-P. Shih, Jason Liu, Kenny Hu, Zach Stratton, and C.-S. Lee

School of Aeronautics and Astronautics, Purdue University

Mark Bryden Ames National Laboratory, U.S. Dept. of Energy

Robin Ames and Rich Dennis

National Energy Technology Laboratory, U.S. Dept. of Energy

DoE – NETL & Ames Laboratory

Our research group's focus is on turbine cooling. Current efforts include:

- Perform
 - LES of ingress/egress into the wheelspace between the rotor and stator disks to understand seal design.
 - LES of internal & film cooling aimed at generating statistics to understand physics and to guide development of RANS models.
 POSTER
- Develop
 - BC for LES and BC at the interface between RANS and LES for hybrid methods.
 - $\circ~$ Reduced-order methods from CFD for system-level tools.
- Examine
 - Fundamental issues in computing & measuring heat-transfer relevant to turbine cooling: scaling of data measured in the lab (near 1 atm & room T) to engine conditions (high T & P).

Outline of Talk

- Scaling of Heat-Transfer Data
- RANS, URANS, LES of Ingress-Egress into Rim Seals
- Q&A

Incropera & DeWitt

Design of Experiments - Scaling: $Nu = f(Re, Pr, T_w/T_b, ...)$

Convective heat transfer from a surface is often described by Newton's law of cooling:

All physics dumped into h, but T_b

$$\begin{array}{l} q^{"} = h \; (T_{wall} - T_{b}) \quad \\ Nu = h D_{h} / k \end{array} \begin{array}{l} T_{b} = \displaystyle \frac{\int_{A} \rho u C_{p} \, T dA}{\displaystyle \int_{A} \rho u C_{p} \, dA} \end{array}$$

In turbine cooling,

 T_b can vary appreciably along the cooling duct → T_w/T_b > 2 because q" can be as high as 400 W/cm².

Thus,

 the local Re & Pr and hence Nu can vary appreciably along the duct

Nu

Design of Experiments - Scaling: $Nu = f(Re, Pr, T_w/T_b, ...)$

Currently, almost all experiments that measure the HTC are conducted at T_w/T_b near unity because realistic temperatures are hard to reproduce in the lab.

Right now, we all assume that $Nu = f(Re, Pr, T_w/T_b, geometry, entrance region)$.

Since T_w/T_b and hence Re and Pr can vary appreciably along the cooling duct, should those variations be reproduced in the experimental set up in addition to Re, Pr, and T_w/T_b when measuring the HTC?

That is should Ld(Re)/dx and d(Pr)/d(x/L) be added to Nu = f(Re, Pr, T_w/T_b , geometry, x/L)?

Is this a reasonable question? In hypersonics, chemical kinetics, ..., the rate is important

Design of Experiments - Scaling: Nu = $f(Re, Pr, T_w/T_b, ...$

Literature Review:

Perkins & Worsoe-Schmidt, Int'l J. of Heat & Mass Transfer, Vol. 8, 1965, pp. 1011-1031:

- straight tube with circular cross section and L/D = 160 (vertical tube & upward flow)
- T_w/T_b up to 7, Re = 18,300 to 279,000
- provided local HTC based on 1-D analysis along duct to get T_b

They found that regardless how much T_w/T_b changed along the duct, all data collapse to a straight line except near the duct inlet and if Re is sufficiently high and the actual T_b is used (i.e., no approximations to the T_b).

Thus, Nu = f(Re, Pr, T_w/T_b , geometry, entrance region) is correct - at least for circular ducts without features (e.g., ribs, pin fins, ...).

Design of Experiments - Scaling: $Nu = f(Re, Pr, T_w/T_b, ...)$

What does

It means we can assume local thermodynamic equilibrium to hold for heat transfer so that $Nu = f(Re, Pr, T_w/T_b)$, geometry, entrance region) is effectively an equation of state that depends only on the geometry and distance from the entrance region.

Thus, if

- The experimental setup is geometrically similar
- Re, Pr, T_w/T_b are the same

then

Nu_{exp} = Nu_{real engine conditions} except in the entrance region

Since most measurements of HTC are made at T_w/T_b near unity, how to scale from $T_w/T_b = 1$ to $T_w/T_b > 1$?

Design of Experiment / Scaling: How to scale lab to real?

How scale measurements of HTC at lab conditions $(T_w/T_b = 1)$ to engine conditions $(T_w/T_b >> 1)$?

Design of Experiments - Scaling: $Nu = f(Re, Pr, T_w/T_b, ...)$

- Most previous experimental studies of the flow and heat transfer in channels with pin fins have focused on time-averaged data (Metzger, Simoneau, Van Fossen, Chyu, Siw, Ames, Lawson, Ostanek, Thole, Ekkad, ...).
- Thus, most CFD studies have been based on RANS (**Delibra, Chi, Shih, Li, Jiang, Ligrani,** ...).

Recently

- Ames & Dvorak (2006), Ames et al. (2005, 2007), Ostanek & Thole (2012) measured the unsteady flow and heat transfer induced by the shedding of the wakes behind the pin fins.
- Delibra et al. (2008, 2009), Paniagua et al. (2014) reported URANS and LES studies to assess the capabilities of turbulence models for predicting the unsteady flow and heat transfer in a short pin-fin array.

Problem Description staggered array of short pin-fins H/D=1 (short pin-fins) L/D=25 S_x/D=2.5 (streamwise pin spacing) . S_v/D=2.5 (spanwise pin spacing) D=5.08mm (0.2") Υ TOP VIEW periodic boundary condition D S, periodic boundary condition L Ζ SIDE VIEW н ٦ outflow no-slip, isothermal (hot) wall cooling air inflow $P_b = 25 bars$ $\dot{m} = 0.00636 \text{ kg/s}$ Case Tw (hot wall temp,°C) T_w/T_c $T_{c} = 400^{o}$ C 1 420 1.03 $Re_{D} = 25,000$ 2 1,000 1.89 3 1,500 2.63 4 2,000 3.38

Formulation / Numerical Method of Solution

Code: ANSYS-Fluent v16.2

Formulation for Gas Phase:

- unsteady, compressible, thermally perfect gas with k(T), $C_{p}(T),$ and $\mu(T)$
- ensemble averaged continuity, momentum, and energy eqs. closed by the SST model

Algorithm:

- 2nd-order accurate in time
- PISO with 2nd-order upwind for the advection terms & central for diffusion terms

Convergence Criteria for Unsteady Solutions:

iterate until converged at each time step - normalized residual at the end of each time step for continuity< 10^{-5} , momentum< 10^{-5} , and energy< 10^{-7} , turbulence quantities < 10^{-5} .

Mean Endwall Friction Coefficient (C_f)

Outline of Talk

• Scaling of Heat-Transfer Data

• RANS, URANS, LES of Ingress-Egress into Rim Seals

• Q&A

RANS, URANS, and LES of Ingress/Egress into Rim Seals

Jason Liu and Tom I-P. Shih School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA

> Francesco Polidoro and Swen Noelting EXA Corp.

> > **K.M. Bryden** DoE Ames Lab

- Introduction
- Objective
- Problem Description
- Formulation / Numerical Method of Solution / Code
- Results
- Summary

Ingress & Egress from Rim Seals

Hot gas can enter the gap between rotor and stator disks because of the high pressure

Many Previous Experimental Work on Seals

Experimental Studies:

- University of Bath: Owens, Lock, Sangan (2011, Bath
- General Electric Global Research Center: Bunker et al. (2009, GE)
- Arizona State University: Roy, Zhou, Balasubramanian (2005, 2007, 2015)
- Ohio State University: Dunn, Green, ... (2014, ...)
- Penn State University: Karen Thole ← DoE & P&W

Computational Studies:

- Laskowski, et al. (2009, GE)
- Zhou, et al. (2011, Beihang University)
- Wang et al. (2012, Pratt & Whitney)
- Teuber (2013, Siemans)
- Lalwani (2014, Bath)
- Green, Dunn, et al. (2014, Ohio State)
- Mirzamoghadam, et al. (2015, Honeywell)
- Liu, Weaver, Shih, Sangan, & Lock (2015, Purdue & Bath)

DoE – NETL & Ames Laboratory

Outline

- Introduction
- Objective
- Problem Description
- Formulation / Numerical Method of Solution / Code
- Results
- Summary

Objective

- Assess LBM method in predicting
 - pressure distribution after stator •
 - swirl in the wheelspace •

ingress through the seal by comparing results against EXP data & RANS results from CFX.

 Investigate the effects of vanes and blades on ingress.

Mathematical Approach

○ Powerflow: URANS \rightarrow LES

DoE – NETL & Ames Laboratory

Outline

- Introduction •
- Objective
- Problem Description
- Formulation / Numerical Method of Solution / Code
- Results •
- Summary ٠

- Introduction
- Objective
- Problem Description
- Formulation / Numerical Method of Solution / Code
- Results
- Summary

Formulation/Numerical Method of Solution/Code

Code: Powerflow 5.1b

Formulation:

- Boltzmann Transport Equation
- Renormalized group form of the k- ε equations with proprietary extensions

Algorithm:

- Lattice-Boltzmann method: $f_i(\vec{x} + \vec{c_i}\Delta t, t + \Delta t) = f_i(\vec{x}, t) + C_i(\vec{x}, t)$
- D3Q19 model: Discretizes the continuous velocity space \vec{c} with a set of 19 discrete velocities in three dimensional space.
- Collision operator C is simplified using a patent pending "filter collison operator"

Convergence Criteria:

- compute until time-averaged
 - axial velocity in annulus converges and matches rotor-stator velocity triangle
 - o pressure is steady in the annulus
 - o Effectiveness is steady in the wheelspace

- Introduction
- Objective
- Problem Description
- Formulation / Numerical Method of Solution / Code
- Results
- Summary

Pressure: CFX (RANS)

Pressure was measured and non-dimensionalized ($cp = \frac{p-\bar{p}}{\frac{1}{2}\rho\Omega^2 b^2}$). Cp is measured on

the green line, marked A in the right figure and denoted as dots in the left figure. Cp was computed on all lines shown in the right figure and denoted as solid lines with the same color in the left figure. CFD results show (1) Cp to vary significantly downstream of vane and (2) Cp computed and measured match almost perfectly if location is 1 mm off.

Pressure: CFX (RANS) vs Powerflow (LES)

P from PowerFlow is averaged over 5 blade passes. Min-Max predicted by PowerFlow is 8% more accurate than those predicted by CFX.

Swirl: CFX (RANS) vs Powerflow (LES)

Powerflow matches the swirl measurements as well as CFX at lower radius. At higher radius, it starts to over-predict swirl. However, Powerflow predicts the highest radius point of swirl more accurately. CFX severely under-predicted ingress. This means that the high swirl fluid that would be ingested was not seen in CFX. Conversely, Powerflow better predicts ingestion, thus there is better agreement for the swirl near the seal.

The time difference between the frame on the left and the frame on the right is that 1/30 of a blade passing has gone by. Thus, the movement of the hot ingested fluid has only rotated a small amount in that time at approximately the rotor

However, on the stator, the pressure responds more quickly. For the same time, we see much greater pressure changes. In part, this is because the stator blades reduce the area and increase the velocity between the blades. Thus, the changes that occur are more rapid between the blades than at the seal.

Pressure: Different RPMs

The change in rpm also dramatically changes the pressure distribution over the seal. At the higher rpm, there are now 28 pressure pairs over the seal, as opposed to the 34 seen in the lower rpm case. Since the blade and vane numbers remain the same, this difference may be a contributing factor to the change in ingestion patterns seen previously.

- Introduction
- Objective
- Problem Description
- Formulation / Numerical Method of Solution / Code
- Results
- Summary

Summary

- A Powerflow simulation based on a Rotor-Stator case run at the University of Bath was completed.
- Powerflow was able to predict the pressure distribution as well, if not better, than CFX.
- Powerflow also better matched swirl in the wheelspace closest to the seal. It also
 matched well at lower radius, but had poorer matching between the seal and
 wheelspace inlet.
- The final ingested amount did not match the experiment. However, unlike the CFX steady simulations in the correct reference frame, Powerflow did show that hot fluid was ingested.
- Ingestion was seen to be initially a function of the rotor blades.
- However, how far the ingress penetrates into the wheelspace was a function of both the rotor and the stator.
- Across the seal, there is a number of high low pressure pairs that does not correspond to either the number of vanes or blades. This mismatch affects how far the hot gas penetrates into the wheelspace.
- The timescale of the pressure variations at the seal differs from the rotation speed, which makes predicting the ingestion pattern as a function of vane and blade relative locations difficult.
- At different rpms, the locations where the ingestion occurs can still be seen as a function of the rotor. However, the depth of penetration has changed. This difference is a consequence of the different pressure distribution that occurs at the seal.

Outline of Talk

- Scaling of Heat-Transfer Data
- RANS, URANS, LES of Ingress-Egress into Rim Seals
- Q&A

