Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles

Jacob Delimont, Ph.D. Aaron McClung, Ph.D. Southwest Research Institute

Marc Portnoff Lalit Chordia, Ph.D. **Thar Energy L.L.C.**

Work supported by US DOE under DE-FE002401

11/10/2016

Outline

- Phase I Overview
 - Background
 - Project Objectives
 - Phase I Progress
 - Cycle Modeling
 - Chemical Kinetics
 - Preliminary Combustor Design
 - Bench-top Combustor Test
- Phase II Project Plan

11/3/2015

What is a sCO2 cycle?

- Closed Cycle

 Working fluid is CO2
- Cycle Type
 - Vapor phase
 - Transcritical
 - Supercritical
- Supercritical CO2 has:
 - High fluid density
 - High heat capacity
 - Low viscosity

11/3/2015

Why sCO2 Power Cycles?

- Offer +3 to +5 percentage points over supercritical steam for indirect coal fired applications
- High fluid densities lead to compact turbomachinery
- Efficient cycles require significant recuperation

11/3/2015

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006

Why Oxy-Fuel Combustion?

11/10/2016

Project Objectives

• Optimize the supercritical CO2 power cycle for direct fired oxy-combustion

- Target plant conversion efficiency is 52% (LHV)

- Technology gap assessment for direct fired plant configurations
- Develop a high inlet temperature oxycombustor suitable for the optimized cycle

- Target fuels are Natural Gas and Syngas

Outline

- Phase I Overview
 - Background
 - Project Objectives
 - Phase I Progress
 - Cycle Modeling
 - **Chemical Kinetics**
 - Preliminary Combustor Design
 - Bench-top Combustor Test
- Phase II Project Plan

11/3/2015

Oxy-Combustion Plant Model

11/3/2015

2015 University Turbine Systems Research Workshop 1U s w

Condensation and Recompression Cycles

Temperature (C)

11/3/2015

2015 University Turbine Systems Research Workshop

Cycle Analysis Results

- Recompression cycle has highest efficiency
 53.4% at 200 bar, 56.7% at 300 bar
- Condensation cycle

11/3/2015

- 51.6% at 200 bar, 54.0% at 300 bar
- Superior in all other metrics
- Reduced recuperation (~ 50%)
- Lower combustor inlet temperature
- Higher power density (power output / flow rate)
- Both cycle configurations are compatible with an *auto-ignition* style combustor for 1200 C Turbine inlet temperatures.

Outline

- Phase I Overview
 - Background
 - Project Objectives
 - Phase I Progress
 - Cycle Modeling
 - Chemical Kinetics
 - Preliminary Combustor Design
 - Bench-top Combustor Test
- Phase II Project Plan

Kinetic Model: Motivation

- The fundamental size of the combustor is governed by the timescale of chemical reactions
- The chemical reaction kinetics determine how fast fuel oxidation occurs
 - A detailed chemical kinetic model is required to size the combustor
 - A reduced chemical kinetic model is required for detailed flow-field design in CFD

No data available at conditions relevant to this application.

Mechanism Selection

- Primary selection criterion is accurate prediction of the overall reaction time scales
 - Drives the combustor design
 - More important than other details such as peak concentration values
- USC-II is the clear choice based on this criterion
 - Most accurate in highest pressure flamespeed and autoignition validation comparisons
- USC-II also had good to adequate performance in low pressure CO₂ studies
- USC-II predictions should carry +/- 50% uncertainty in this application

11/3/2015

Reduced Order Model

- For incorporation into a CFD model a reduced order model was developed
- Equations based on Arrhenius rate equation were tuned to match USC-II model predictions
 - Match autoignition delay
 - Match residual CO levels

11/3/2015

- Overall time to complete reaction

Outline

- Phase I Overview
 - Background
 - Project Objectives
 - Phase I Progress
 - Cycle Modeling
 - Chemical Kinetics
 - Preliminary Combustor Design
 - Bench-top Combustor Test
- Phase II Project Plan

11/3/2015

Mixing vs. Kinetics Time Scales

- Time scale of reaction kinetics is much smaller than physical mixing time scales
- Combustion size and length governed by physical mixing
- Use of CFD with finite rate chemistry to model this

Initial Combustor Concept

11/10/2016

2016 University Turbine Systems Research Workshop

CFD Model Setup

- ANSYS CFX 16.2
- Unstructured mesh
 - Boundary layer and injection region refinement
 - 4 million elements
 - Mesh sizes from 2 to 17 million elements for independence study
- Finite rate chemistry

11/10/2016

 Extrapolated reduced order equations

Temperature in 45° Clocked Case

11/10/2016

Change Injection Spacing

- Injection oxygen and fuel need not be at same location
- Auto-ignition allows even small concentrations of fuel+oxidizer to react

Final Design: Fuel Injection 24in Upstream

- Fuel well mixed throughout combustor before oxygen
- Allows hydrocarbon "cracking" before oxygen injection
- Cooler max temperatures
- Very good mixing at outlet
- Very low unburnt fuel percentage

11/10/2016

Preliminary Mechanical Design

- Thermal design
 - Thermal containment using refractory insulating layer
 - Cooling CO₂
- Mechanical design
 - Utilizes stainless steel ANSI pipe and flanges

Outline

- Phase I Overview
 - Background
 - Project Objectives
 - Phase I Progress
 - Cycle Modeling
 - Chemical Kinetics
 - Preliminary Combustor Design
 - Bench-top Combustor Test
- Phase II Project Plan

Bench-top Combustor Test

- Small bench top test to study proof of concept, autoignition delay, and chemical kinetics
- Once through type system
 - 200 bar pressure

- Electric heaters used to set inlet temperature
- Jet in cross flow type fuel and oxidizer injection

Test Stand Loop Design

11/10/2016

Oxy-fuel Test Reactor

- Machined from Haynes 230 bar stock
- Instrumentation standoff tubes welded to main combustor
- Two stage pre-heater to achieve 925°C combustor inlet
- Water jacketed gas sampling

11/10/2016

2016 University Turbine Systems Research Workshop

Fuel and Oxygen Injector Design

- Precise sapphire orifice set into stainless steel mount
- Orifice constriction placed close to the combustor
- Mounted inside welded in place standoff

Combustor Test Stand

11/10/2016

Test Stand Assembly

- Testing at Thar's facility in Pittsburg, PA
- Outdoors with remote operation

11/10/2016

2016 University Turbine Systems Research Workshop

Instrumentation

- Thermocouples in combustion zone
- Dynamic pressure transducers
- Three gas sampling ports
 - Optical emission spectroscopy (OES) to analysis chemical makeup

OES

- Optical emission spectroscopy (OES)
- Utilizes a plasma generator to identify chemical species
- **Requires rapid thermal** quenching of sample to halt chemical reactions
- SwRI has experience using OES for gas species analysis

Test Stand Operation

- Shake down tests
 - Observed auto-ignition combustion during shakedowns at full pressure and 80% temperature
- Component failures

- Backpressure control valve
- Mass flow controllers
 - Viton rubber does not mix with sCO2

Outline

- Phase I Overview
 - Background
 - Project Objectives
 - Phase I Progress
 - Cycle Modeling
 - Chemical Kinetics
 - Preliminary Combustor Design
 - Bench-top Combustor Test
- Phase II Project Plan

Phase II

- Complete detailed design
- Fabricate combustor and test loop
- Shake down and commission
- Test combustor

- Phase II duration: 3.5 years
- Partnered with Thar Energy, Georgia Tech, UCF and GE Global Research

Detailed Combustor Design

- Develop more detailed and accurate combustion kinetic mechanisms
- Utilize CFD to study combustion flow field
- Detailed thermal and mechanical design
- Final design for manufacturing

11/10/2016

Combustor Integration with Sunshot Test Hardware

11/10/2016

Combustor Integration

- Utilize existing Sunshot hardware
- Install oxy-fuel combustor
 - Demonstrate a direct fired oxy-combustor in a closed **Brayton cycle**
 - Evaluate combustor performance
 - Evaluate flue gas cleanup
 - Indirect heater allows for various combustor inlet conditions to be studied

Oxy-Combustor added downstream of indirect heater

Planned Test Measurements

- Multiple OES sample locations
- Temperature measurements
- High speed pressure measurement for acoustic phenomena
- Study water dropout and separation
- Possible measurements

- Optical access for advanced diagnostics
- Materials sample testing

11/10/2016

2016 University Turbine Systems Research Workshop

