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Introduction

* Project aims to develop an aerothermal engine model that is capable of
evaluating the impact of
» Different cooling configurations
» Seal Designs
» Purge Configurations
» Material properties
»Thermal Barrier Coatings

* Ultimate goal is to be able to identify and evaluate cooling technologies that
will lead to >40% gas turbine efficiency to support CC efficiency of 65%.

* The model will also have the capability of analyzing the effects of pressure
gain combustion, supercritical CO, turbines and cooling of the coolant flow on
engine performance
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Introduction

The location of Cooled Gas Turbine Model in Combined Cycle Performance Calculations

Combined Cycle Plant

Generator 1 STEAM

TURBINE Generator 2

GAS TURBINE

\ >40% engine efficiency

Cooled Turbine Model

=% U.S. DEPARTMENT OF N=|Nanonal

) _ ENERGY

4 (1) g TECHNOLOGY
LABORATORY

4 Cooled Gas Turbine Model




NATIONAL
ENERGY

TE TECHNOLOGY
LABORATORY

Introduction

Project phases and completion dates are as follows:

1. Literature Review & Determining the Model Flowcharts (02/19/2016)
Cooled Turbine Model Development & Validations (04/24/2016)
CGTM Development (06/30/2016)

CGTM Validations (08/31/2016)

General Sensitivity Analysis on Cooling Parameters (10/04/2016)

Adding Correlation Models to use Experimental/CFD Data in CGTM
(Internal/External Cooling methods) (11/15/2016)

7. Detailed Sensitivity Analysis (12/16/2016)
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Literature Review of similar models indicate
a general flowchart of such a model should 4

: : : COOLANT CALCULATIONS
include 3 major sections:

-Overall Cooling Effectiveness

o
. ()]
1. Cooling Flowrates should be calculated S
based on cooling technology = 3
: : : = 15T LAW ANALYSIS
st o
2. 1% Law Analysis using these flowrates will 5| ¢ 0100 at each turbine stage
give enthalpy drop 2
C . : S ¥
3. an Law A.naIYS].S uSIHg lnformatlon fl‘OIIl 8 o IND | AW ANALYSIS Y
previous sections will give exergy -Entropies at each turbine

stage
-Finds exit pressure with 2nd
- Law using these entropies

information
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* Young and Wilcock’s model! was chosen for this model for the following
reasons.
> 1t otves a detailed and complete thermodynamic analysis of a cooled turbine

» Rotor equations include the rotational effects and stage loading (important for correct
enthalpy calculations)

> 224 Law Analysis is done in a compact form that includes all loss factors for better exergy
analysis

» Used and cited by several recent advanced modelling research work (Lallini et al.?
Horlock et al. ?, Torbidoni et al. * etc.)

» Easy to implement in a modelling algorithm

* The flowchart of the model is determined according to this resource
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INPUTS

‘ COOLANT FRACTION CALCULATIONS .
Appropriate
correlation
STATOR COOLING formulas are
Internal Internal N e selehcted for
Cooling +Film _ eac
: +TB + +
Only el TBC Film+TBC component
type

ROTOR COOLING

Internal Internal »
Coolin +Eilm Internal Internal £, €,
- +TBC +Film+TBC

Only Cooling
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15T LAW ANALYSIS
&

Calculate Stator Exit Enthalpy
(Continuity &Energy Balance of Mixing Flows)

'

Calculate Purge Station Exit Enthalpy
(Continuity &Energy Balance of Mixing Flows)

Calculate Rotor Exit Enthalpy in Stationary Frame

(Continuity & Energy Balance [Rothalpy Balance])

. Thermodynamic .
found T, found
Res4 is fou Property Calculator e2.4 B TOUN
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STATOR/ROTOR
Tt@each stage

8

. - . 1 = — 5 . = -
Osjr basic — (mii.l + mstR-i.lcl - EtJ]-“(ﬂ] Os/rcool = Ts.the T Gsmet + Ogine + 0oy,

Usext = Usexc +Js,6xmﬂx

MOdEI by Oz exemin = Osmig T Osmixke
Young et al.*

PURGE(S)
Use mixing flows entropy balance

OsTAGE = OsTaTOR T Z OpurGE,i T OrOTOR
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* The cooled turbine model repeats the previous analysis at each stage, for
each COmponent FOR EACH STAGE

LOOP ON STAGE PRESSURE RATIO

UNCOOLED ENGINE
FOR EACH STAGE COMPONENT

VALUES &
TURBOMACHINERY
NFO COOLED
COOLANT 15T LAW TURBINE
CALCULATOR ANALYSIS EXIT VALUES
ht4.5
I:)t4.5
Middle 2ND LAW Teas (TET)
loo
0P e ANALYSIS
coolant-
supply Calculated

temp. until ¥
the correct

-“¥ Turbine Pressure
Ratio compared

StafehP: is f with fixed stage
matche p s
Otub = SD(TZ) — SO(T‘I]_ R ln PR from
I turbomachinery
model
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Coolant Calculations and 15* Law Analysis sections are validated with the

example case data given by Young et al.*

Stator
Cooling Fraction 0.145
Exit Total Temperature (K) 1598
Rotor
Cooling Fraction 0.050

Exit Total Temperature (K) 1484

.S. DEPARTMENT OF
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Entropy terms from Young et al.* example case is used for 2°¢ Law Analysis
algorithm validation

Entropy Generation-Stator Entropy Generation-Rotor

W Young&Wilcock ®CTM H Young&Wilcock ®CTM

0.0008
0.0006
0.0004
0.0002 I I
0 1 | I I

ext,Q int,Q int,F mix,Q mix,KE

Same trend obtained for both stators and rotors:

OMIX,Q > OintF > OMIXKE > Oext,Q > Oint,Q > Omet» Otbc
(Mixing HT > Internal Friction & BL Friction > Mixing KE > External HT > Internal HT > Conduction HT)

0.005

o
o
o
=

0.003

0.002
0.001 II I I

ext,Q int,Q int,F mix,Q mix,KE

entropy (Btu/lbm.R)
entropy (Btu/lbm.R)

Higher Entropy Rate > Higher Exergy = More deviation from max. theoretical turbine work = Less Turbine Efficiency

(O-) (q):TOd-) (Wactual =Wisentropic'(])) (r]turb,actual < r]turb, isentropic)
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Cooled Gas Turbine Model (CGTM) LI

* Cooled Gas Turbine Model calculations use uncooled engine on-design and

turbomachinery design section results

* CGTM uses methane combustion thermodynamic property tables generated by using

REFPROP! and GASEQ Software?
. Compressor Bleed Air

3BA 36 4
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* Inputs related to cooling analysis are listed as follows:

Bi,, Biot Number (metal) [hot side based]

Biyy. Biot Number (TBC) [hot side based]

T, max Maximum Blade Metal Temperature

Ntc Adiabatic Film Cooling Effectiveness

Ne Internal Cooling Effectiveness

purge, Pre-stage purge fraction

purge, Intermediate stage purge fraction

[Schedule],, .« Cooling Schedule matrix indicating which cooling

technology applied to each cooled component

*n= #of cooled stages
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CGTM calculates some of the essential turbomachinery information for
cooling analysis such as stage velocity triangles, stage entry/exit flow
angles, number of stages, stage pressures and temperatures

Compressor

0
10 11 12 13 I
1 2 3 4

Stage #

[ w I w =2}
o o (=] [=) o

Length of Component (in)

[y
o

Stage #

w
o

H Disk mBlade

Length ofComponent(m

[}
o

=
o

o
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* Validations carried out with three H-class gas turbines: Siemens SGT6-
8000H, General Electric GE7THA.02, and Mitsubishi Heavy Industries
M501]

* Cycle calculations and component performance results were validated
with GasTurb12 Software

* Number of stages, blade heights and disk dimensions were used in
turbomachinery design section validation with available public data for
the selected gas turbines

* Power, Heat Rate, Exhaust Temperature, and number of stages were
used with engine parameters to match the real engine data
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LTI 296 Mw 296 MW

Thermal Efficiency 40.0 % 40.0%
8526 Btu/kWh 8530 Btu/kWh
1159 °F 1160 °F
™™ |Published Value[1] |
A 347 MW 346 MW e
Thermal Efficiency 42.2 % 42.2% ==
8084 Btu/kWh 8080 Btu/kWh

SUETS RN E - 1153 °F 1153 °F
™™ |Published Value[1] |
LT 327 Mw 327 MW

Thermal Efficiency 41.0 % 41.0 %

8325 Btu/kWh 8325 Btu/kWh

SUETH A O 1178 OF 1176 °F



https://powergen.gepower.com/products/heavy-duty-gas-turbines/7ha-gas-turbine.html%20on%2008/16/2016
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* Cycle calculations were validated with GasTurb12 via case specific tests
and continuity tests.

* Case specific tests compares the outputs of two programs side-by-side for
specified engine parameters

* Continuity test aims to compare the response of two programs to the
same input parameter varied in a predetermined range

* GasTurbl2 uses a different cooling analysis model (a pressure loss model)

but two programs are made comparable by entering the cooling fractions
calculated by CGTM into GasTurb12.
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Shaft Power Delivered

Power Specific Fuel Consumption

600000 Thermal Efficiency
0.4
500000 038 0.5
_ 036 0.45
— 400000 < 034
< < 032 \ 04
= 300000 E 03 I < /
g 2 0.28 <! 035 GasTurb12
8- 200000 o
Z, 0.26 0.3 ——CGTM
100000 0.24 0.25
0.22
0 0.2 0.2
2600 2800 3000 3200 3400 3600 2600 2800 3000 3200 3400 3600 2600 2800 3000 3200 3400 3600
Tt4 (R) Tt4 (R) Tt4 (R)
. _ -
. _ Total Coolant Flow Fraction (charged) 14.0 14.0
Sample Test Results for a generic Compressor Isentropic Eff. 0.840 0.827 - 1.57
H-Class engine scenario i Burner fuel-to air ratio 0.02796  0.02813 - 0.61

_ Turbine Isentropic Eff. 0.928 0.921 - 0.75
LW Turbine Pressure Ratio 0.0567  0.0563 - 0.71
Exhaust Pressure Ratio 1.03 1.04 - 0.97

Shaft Power Delivered 417266 421998 hp 1.13
PSFC Power Specific Fuel Consumption 0.296 0.298 lbm/(hp.hr) 0.68

UM Thermal Efficiency 40.2 40.0 % 0.50
LI Heat Rate 8508 8537 Btu/kWh 0.34
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* Sensitivity analysis on some general cooling input parameters of CGTM

is made by using following variables:

» Blade Metal Material Properties (through reducing Bi_ and increasing max. allowable

metal temperature(Ty, ) )
» Thermal Barrier Coating Material Properties (through Bige)
» Internal Cooling Efficiency (1)
» Film Cooling Efficiency ()

* The effects of changing these parameters on gas turbine key performance
parameters (powert, heat rate, thermal efficiency) were analyzed separately

* Sensitivities of the performance parameters on these cooling variables are
found and a sensitivity chart is obtained for each performance parameter




Sensitivity Analysis

Thermal Efficiency

Sensitivity for Thermal Efficiency Higher Slope=Higher Dependency
20
15
10
>
5 Advancement in technology (for Bi_) 5
O -
‘@
TU‘GO -40 -20 0 20 40 60
£
v
f —>
£ & Advancement in technology (except Bi )
(<))
o1}
: -
2 5 —._Metal Biot Number (B1,,))
Q .
X —~TBC Biot Number (Birgc)
20 —~—Max. Blade Met. Temp. (T}, ;na:z)
Internal Cooling Eff. (1)
0 ——Film Cooling Eff. (7))
% changzoin parameter € YT iy (N=|aona:
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* Increasing the maximum blade temperature through advanced blade materials will
have the highest impact to increase thermal efficiency

* Advancements in film cooling techniques will have higher impact than advancements
in internal cooling techniques and TBC materials

* Reducing metal Biot number through reduced metal conduction rates has the lowest
impact

* The magnitudes of the effects are directly related to how much a cooling technique
can reduce the required coolant flowrates as its efficiency is increased

* Reducing the coolant flowrates will reduce tutbine losses, increase compressor
performance and engine power, resulting in higher thermal efficiency

* In the case of changing two or more technology parameters simultaneously, cross-
effects through loss parameters could result in a lower increase in thermal efficiency

.S. DEPARTMENT OF
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Conclusions

* A cooled turbine model is developed that also calculates losses coming
from cooling techniques

* The cooled turbine model is integrated into the Cooled Gas Turbine
Model that calculates gas turbine petformance parameters

* Models were validated with published data and commercial software

* CGTM is used in a parameter sensitivity analysis to understand which
cooling technology has the highest potential to reach >40% GT efficiency

* For a fixed blade material, improving film cooling technologies has the
highest impact on increasing GT efficiency
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* With the addition of cooling technolo .
specific correlations to the model, CGTM will -
be able to be used in comparisons for |
different internal and external cooling

techniques
. . . . Impingement Trailing_ SEs Film Cooling Leading_ Edge
* The model can be used in optimization Cooling Cooling

‘nternal

algorithms to determine what a coolin .
parameter should be to satisfy a desire Parallel
engine performance
o o o o o . : : : Anti-Vortex
* Additional sensitivity studies and e Holes
optimization studies will give more specific

information on what advancements should be
done in a certain cooling technique to attain

higher performance
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Cooled Gas Turbine
Model

A Thermodynamic Model to Quantity the

Impact of Cooling Improvements on Gas
Turbine Efficiency
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