THERMODYNAMIC MINIATURIZED SENSORS AND STANDARDS AND THE QUANTUM SI

GREGORY F. STROUSE

Associate Director for Measurement Services Physical Measurement Laboratory (PML)

gregory.strouse@nist.gov

Future of Metrology?

"It's hard to make predictions, especially about the future"

Yogi Berra

Outline

- Few words on the Système international d'unités (the SI)
- Trend towards a "Quantum SI"
- Trend towards "Embedded Standards"
- Implications for measurement of thermodynamic quantities
- Final thoughts

SI is the Modern, Harmonized Metric System

PML is responsible for 6 of 7 units

NIST seeks to ensure that SI is...

- Scientifically based
- Defined by consensus
- Realized in practice
- Disseminated for routine uses
- Disseminated for new and novel uses
- Maintained and improved

SI underpins *all* measurements, whether expressed in metric units or otherwise

Outline

- Few words on the Système international d'unités (the SI)
- Trend towards a "Quantum SI"
- Trend towards "Embedded Standards"
- Implications for measurement of thermodynamic quantities
- Final thoughts

Classical to Quantum SI Meeting the Metrology Challenges of the 21st Century

- Quantum SI
 - Quantum phenomena
 - Fundamental and atomic constants
- Tying metrology back to fundamental atomic quantities
 - Removing artifacts as defining the SI

NIST Watt Balance

kelvin

Boltzmann constant

kilogram

Planck constant

ampere

Elementary electric charge

mole

Avogadro constant

What do We Mean by "Quantum SI?" Consider the History of the Meter:

1889: Internation (Artifact)

1960: The meter is the length al to 1,650,763.73 wavelengths in variable to the transition to the levels $2p_{10}$ and $5d_5$ of the krypton 8t (11th CGPM, Resolution 6)

1983: The meter is the lengt to path travelled by light in vacuum during of a second. (17th CGPM, on 1)

Quantum SI Metrology Areas

- Acceleration
- Electrical
- Fluid flow
- Humidity
- Length
- Magnetic field

- Mass and force
- Pressure
- Optical power
- Radiation
- Temperature
- Time and frequency

Physical Measurement Laboratory

Outline

- Few words on the Système international d'unités (the SI)
- Trend towards a "Quantum SI"
- Trend towards "Embedded Standards"
- Implications for measurement of thermodynamic quantities
- Final thoughts

PML Priority Advanced Measurement Dissemination

• Improving dissemination of national standards

Using the "21st century toolkit" to reinvent best devices and modes
for calibration services, e.g., greater stability, wider dynamic range

• Embedded sensors: "NIST on a Chip"

Miniaturized devices that minimize the need for traditional calibration services by using quantum effects

 Open metrology: Sharing what we know We commit to providing many, varied training opportunities to our customers to facilitate adoption of best practices

SI Dissemination Methodologies in Practice

Send us an artifact; We'll measure it and return it

Commercially available ITS-90 fixed-point cells

Send us an instrument; We'll calibrate it and return it

Standard Platinum Resistance Thermometer

Don't send us anything; Buy one, and we'll ship it to you

SRM 1968, Gallium Melting-Point Standard

Don't send us anything; We'll observe something together

GPS satellite constellation (atomic clocks in orbit)

Classical Calibration Dissemination Method

Routine shipment of artifacts and instruments for calibration

Over 14,000 artifacts per year – Expensive modality

Advanced Measurement Quantum SI Dissemination

He's got less work to do

Technology transfer

- · Dual platform standards and sensors
- SI realization outside the walls of NIST
- New faster/lower cost calibration services on factory floor
- Enhance economic impact through elimination of waste in industrial processes
- Number of calibrations approaches zero

Emerging Technologies Enable Disruptive Change

- Solid state lasers (e.g., VCSELs)
- Microelectromechanical systems (MEMS)

Example: These technologies enabled the Chip Scale Atomic Clock (CSAC)

NIST Prototype (2004)

Commercialized (2011)

Optical microresonators on a silicon wafer. (Premier issue of *Optica*)

Embedded Metrology ("Chip Scale")

- Flexible
 - Integrated, multi-function standard and sensor platform
- Manufactural
 - Commercialization of designs / recipes to foundry
- Deployable
 - Quantum SI realization and zero-chain traceability
- Usable
 - Rugged and easy to use

Outline

- Few words on the Système international d'unités (the SI)
- Trend towards a "Quantum SI"
- Trend towards "Embedded Standards"
- Implications for measurement of thermodynamic quantities
- Final thoughts

Photonic Sensors

- Light based sensor
 - Change in physical property (e.g., index of refraction)
 creates a resonate frequency shift
 - Frequency notch-filter
- Frequency measurement advantages
 - More accurate than electrical
 - Low noise
 - Telecom industry components

Photonic Temperature Sensor

Classical technology: Electrical temperature sensors

Standard platinum resistance thermometer

Industrial Pt PRT

 $U \lesssim 10 \text{ mK } @ (-196 \text{ °C to } 500 \text{ °C})$

- o Hysteresis
- Mechanical or thermal shock

- Micro/nano-scale size
- o Can be embedded
- Low cost and weight
- Immune to electromagnetic interference
- Negligible hysteresis
- Fast response time
- Can tolerate harsh conditions and treatment

Photonic Temperature Sensors

Si Ring Resonator $U < 0.01 \,^{\circ}\text{C}$

Integrated Photonics Currently

Sensor measurement "platform":

- Temperature
- Pressure
- Vacuum
- Humidity
- Strain
- Chemicals
- Radiation

Integrated Photonics The Future for Mobile Sensing

Sensor measurement platform:

- Temperature
- Pressure
- Vacuum
- Humidity
- Strain
- Chemicals
- Radiation

Possible Route to a Practical "Quantum Kelvin"

- Standard built into the sensor design
 - Nanoscale opto-mechanical silicon beam

Mechanical mode (standard)

 Phonon Boltzmann distributions of thermodynamic temperature states created to calibrate sensor temperature response

Optical mode (sensor)

 Temperature-dependent shift in sensor resonance is utilized to make temperature measurements

o Q ~ 1,000,000

○ Resolution: $\delta \lambda_{\text{MIN}} \approx 0.1 \text{ pm}$ $\delta T_{\text{MIN}} < 1 \text{ mK}$

Steps Toward Si Traceability to Dynamic Temperature

- Dynamic temperature
 - Developing laser temperature traceability
 (e.g., welding, chip manufacturing, eye surgery)
- First attempt proof of concept
- YAG laser at 50 mJ
 - $-\Delta P = 32 \mu W$
 - $-\Delta T = 0.74 \text{ K}$
- SI traceable *T* through a photonic sensor

Quantum Pressure Standard and Sensor: FLOC (Fixed Length Optical Cavity)

- Compact, portable, quantum-based primary barometric pressure standard
- Replaces multiple commercial gauge technologies
- Range of 1 mPa to 1,000 kPa (10 atm)
 - Eight decades of pressure measurement in one instrument
- Based on refractive index of He (calculable to 0.1 ppm)

$$n-1 \propto P / (k_B T)$$

Fixed Length Optical Cavity (FLOC) gauge measures pressure from optical phase shift between lower channel (high vacuum) and upper channel (gas filled)

Key Advantages of Photonic Pressure

Hg manometer

Photonic standard

- Elimination of mercury-based pressure standards
 - 400 year old technology
- 35× more sensitive
 - Resolution of 0.1 mPa
- 100× faster
 - Replaces inherently slow electrical-based measurements
- 1,000× lower pressure range
- Uncertainty smaller than Hg manometer
- Dual standard and sensor

Brings SI to the factory floor:

- Pressure
- Length
- > Reducible to size of cell phone

Cold Atom Vacuum Standard (CAVS)

- First-principle realization for UHV (10^{-6} to 10^{-9} Pa) and XHV ($\leq 10^{-10}$ Pa)
- Quantum-based vacuum standard and sensor
 - When a background molecule collides with a trapped atom,
 the atom is ejected with near 100 % probability
 - Measuring trap lifetime gives pressure

Quantum SI realization – reducible to cell-phone size

- Accelerators
- Semiconductor mfg
- Space sciences
- Surface sciences
- Quantum Information

NIST pressure and vacuum standards

Dynamic Pressure – SI Traceability

- Static vs Dynamic SI Traceability
 - Dynamic is the next frontier
- Standards
 - SI traceable impulse standards and calibration methods are not available
- Sensors
 - Pressure sensors are only as good as their calibrations
- Develop new SI Traceable Standard and NoaC sensors

Next Frontier: Dynamic, Impulse Measurement Standards

Design Specifications

- Size 2 mm × 1 mm
- High sensitivity
- High speed > GHz
- Dynamic range ≈ 10 % of operating pressure

Temperature Compensated, Dynamic Pressure Sensor Mach–Zehnder based Design

Long Term Vision

Fully integrated dynamic measurement sensor for pressure, temperature, relative humidity, and chemical species

Other Applications – Studies in Progress

Infrastructure Monitoring

Laser Power Meters

Nanotube Black—For Laser Power Meters

- >99 % conversion of light (broadband) to heat
- Enabling technology for high-accuracy optical (e.g., laser) power measurements
 - Terahertz [THz] radiation, currently a hot research topic for wireless communications
 - 300 nm to 500 μ m
- Less expensive, more accurate, more portable than sensor technology it replaces
 - Zero-chain traceability
- Collaboration with PTB (Germany)

Deployed Quantum SI Enables Technology Infrastructure

Chip Scale Atomic Clock (10⁻¹¹ uncertainty)

As commercialized

Telecom networks >\$2 trillion/year globally

Outline

- Few words on the Système international d'unités (the SI)
- Trend towards a "Quantum SI"
- Trend towards "Embedded Standards"
- Implications for measurement of thermodynamic quantities
- Final thoughts

Possible Implications for NMIs

- For NIST
 - Focus shifts from artifact calibration to new deployable dual standards and sensors
 - Disruptive SI dissemination
 - Quantum-based metrology
 - Commercialization
- For international metrology
 - Traceability
 - Mutual recognition
 - Accreditation (think 17025)

- For NMIs in the "distant" future
 - What is the future of calibrations?
 - Will we still be necessary for traceability?
- For NIST
 - New metrology frontiers
 - Quantum-based SI everywhere
 - Expertise is still essential
 - Solve really hard problems
 - Training

Open Metrology – Key NMI Role

With dissemination of advanced measurement technology directly to the end user, training becomes even more critical

SIM Metrology School

Office of Weights and Measures (OWM) conducts training classes for trainers

National Institute of Standards and Technology

U.S. Department of Commerce

Enabling the Next Generation of Metrology

- · Embedded Standards
- Ultrastable Lasers
- Optical Clocks
- Advanced Imaging
- · Quantum Information
- · Nanoscale Measurement
- · Redefining the SI

Custom Measurement Solutions

Take advantage of NIST's unparalleled depth of measurement expertise, world-class facilities, and one-of-a-kind instruments.

Our metrologists work directly with companies and organizations of all sizes, and have decades of experience in devising individualized measurement solutions.

Providing Measurement Services

- Callbrations
- Standard Reference Materials
- Standard Reference Data
- · Standard Reference Instrumentation
- Training

