DOE FE Advanced Turbines Program

2016 University Turbine Systems Research Project Review Meeting

Rich Dennis

U.S. Department of Energy National Energy Technology Laboratory *November 1, 2016*

Virginia Tech, Blacksburg, VA

- Gas Turbines and the Power Generation Market
- Overview of DOE FE Advanced Turbines Program
 - Program Goals and Budget
 - Combustion Turbines for 65 % Efficiency
 - Turbomachinery for SCO2 Power Cycles
- Overview of DOE's Cross Cut Initiative SCO2 Power Cycle Program
 - DOE SCO2 CCI
 - Projects
 - Advanced Recuperators
 - 10 MW SCO2 Pilot Plant
- FE AT UTSR Request for Information
- Summary

• Gas Turbines and the Power Generation Market

- Overview of DOE FE Advanced Turbines Program
 - Program Goals and Budget
 - Combustion Turbines for 65 % Efficiency
 - Turbomachinery for SCO2 Power Cycles
- Overview of DOE's Cross Cut Initiative SCO2 Power Cycle Program
 - DOE SCO2 CCI
 - Projects
 - Advanced Recuperators
 - 10 MW SCO2 Pilot Plant
- FE AT UTSR Request for Information
- Summary

US Natural Gas, Dry Gas Production Historical and Projection

US Electricity Net Generating Capacity

• CC & CT have net capacity addition of 121.6 GW

* Net increase includes additions and retirements

- Gas Turbines and the Power Generation Market
- Overview of DOE FE Advanced Turbines Program
 - Program Goals and Budget
 - Combustion Turbines for 65 % Efficiency
 - Turbomachinery for SCO2 Power Cycles
- Overview of DOE's Cross Cut Initiative SCO2 Power Cycle Program
 - DOE SCO2 CCI
 - Projects
 - Advanced Recuperators
 - 10 MW SCO2 Pilot Plant
- FE AT UTSR Request for Information
- Summary

Advanced Turbines Program Goals

2025 Transformational Goals

- Combustion turbine with 3,100 F TIT, 65 % CC efficiency (LHV)
 - Bench marked against NG fueled combined cycle machines
 - Anticipate additional 20 % reduction in capture cost / 15 % COE reduction
- Supporting goals for power cycles based on supercritical carbon dioxide
 - Indirect SCO2 Power Cycles Turbomachinery Efficiency
 - Develop / test expanders with efficiencies in the low 90s
 - Develop / test compressors with efficiencies in high 80s
 - Large 300 MW scale machines
 - Incumbent to beat: AUSC steam boiler / turbines cycles
 - Direct Fired SCO2 Power Cycles SCO2 Combustion Turbine
 - Oxy-fuel (gaseous) combustion with CO2 dilution at high pressure
 - Combustor turbine integration
 - Large 300 MW scale machines
 - Incumbent to beat: F / H- class CC w/ post combustion carbon capture

Budget History and Major Accomplishments

FYs

Advanced Multi-Tube Mixer Combustion for 65% Efficiency

General Electric Co.

PROJECT NARRATIVE

- GE will develop and synthesize their multi-tube mixer combustion technology
- Goal of low NOx emissions up to 3100F while supporting load following grid needs
- Ultra-compact design that minimizes NOx formation and minimizes surface area to be cooled
- In-depth engineering analysis and design with minimal laboratory testing

BENEFITS

- Contributes to DOE goal of 65% combined cycle efficiency
- Enables robust fuel flexibility

PROJECT INFORMATION

- Project Title: Advanced Multi-Tube Mixer Combustion for 65% Efficiency
- Award Number: FE0023965
- **Project Duration:** 01/01/15 06/30/16
- Key Technology: Advanced Combustion Turbines
- Location: Schenectady, NY
- FPM: Mark Freeman
- **PI:** Willy Ziminsky
- Project Performer: General Electric Co.
- Partners: GE Power & Water, GE Global Research

GE FULL SCALE EARLY COMBUSTION HARDWARE

BUDGET

Total Award	l: \$9,440,737		
DOE Share:	\$6,608,516		
Performer S	Share: \$ 2,832	.,221	
DOE Fundi	ng Plan		
FY14	FY15	FY16	
\$554,962	\$125,000	-	Phase I – Fully funded in FY15
		\$2,236,870	Phase II

Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle

NET NATIONAL ENERGY TECHNOLOGY LABORATORY

Siemens Energy Inc.

PROJECT NARRATIVE

- Siemens will develop a CMC based design for Siemens's Advanced Transition
- Deliverable is a design concept read for fabrication and test in a Phase II project
- Will utilize Siemen's patented Hybrid Oxide CMC system

BENEFITS

- Reduced cooling requirements enabling higher turbine inlet temperatures
- Contributes to DOE goal of 65% combined cycle efficiency

PROJECT INFORMATION

Project Title: Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle
Award Number: FE0023955
Project Duration: 10/01/14 - 03/31/16
Key Technology: Advanced Combustion Turbines
Location: Orlando, FL
FPM: Seth Lawson
Project Performer: Siemens Energy Inc.
Pl: Jay Morrison

Advanced Transition Siemens' Advanced Transition offers significant reduction in Cooling & Leakage Air

BUDGET

Total Award	d: \$8,118,348		
DOE Share	: \$6,494,678		
Performer \$	Share: \$1,623	6,670	
DOE Fundi	ing Plan		
FY14	FY15	FY16	
\$649,454	\$470,329	-	Phase I – Fully funded in FY15
		\$1,725,000	Phase II

High Temperature Ceramic Matrix Composite (CMC) Nozzles for 65% Efficiency

General Électric Co.

PROJECT NARRATIVE

- GE will develop cooled high-temperature CMC nozzles (non-rotating airfoils)
- Leverages existing knowledge of CMC materials
- Phase I scope includes
 - o Design and analysis of attachment configurations
 - o Investigation of impingement and film cooling
 - Definition of sealing approaches, design of key sealing features, and analysis of sealing effectiveness
- Limited bench flow testing

BENEFITS

- Contributes to DOE goal of 65% combined cycle efficiency
- Revolutionary component architectures

PROJECT INFORMATION

BUDGET

GE BAYONET NOZZLE ASSEMBL

Total Award: \$9,537,331 DOE Share: \$6,564,478 Performer Share: \$2,972,853 DOE Fundiny Plan FY14 FY15 FY16 \$219,499 \$470,329 Phase 1 – Fully funded in FY15 \$1,725,000 Phase II

NATIONAL

TECHNOLOGY

Rotating Detonation Combustion for Gas Turbines-Modeling and System Synthesis to Exceed 65% Efficiency Goal

Aerojet Rocketdyne

PROJECT NARRATIVE

- Aerojet Rocketdyne, Inc. will develop, validate, and integrate a systems model for a rotating detonation combustor in a power plant systems model
- Initially creates a system simulation tool for integration
- Results of simulation will be integrated into systems model to define the path to configurations that exceed 65% efficiency

BENEFITS

- Contributes to DOE goal of 65% combined cycle efficiency
- Advances technology for combustion turbines for combined cycle applications

PROJECT INFORMATION

- **Project Title:** Rotating Detonation Combustion for Gas Turbines-Modeling and System Synthesis to Exceed 65% Efficiency Goal
- Award Number: FE0023983
- **Project Duration:** 10/01/14 03/31/16
- Key Technology: Pressure Gain Combustion
- Location: Chatsworth, CA
- FPM: Robin Ames
- Project Performer: Aerojet Rocketdyne
- PI: Glenn Havskjold

BUDGET

Total Award: \$	57,570,127		
DOE Share: \$6	6,054,678		
Performer Sha	are: \$1,515,	449	
DOE Funding	Plan		
FY14	FY15	FY16	
\$600,000	-	-	Phase I – Fully funded in FY14
		\$1,747,517	Phase II

Development of Low-Leakage Shaft End Seals for Utility-Scale sCO₂ Turbo Expanders

General Electric Co.

PROJECT NARRATIVE

- GE and SwRI will develop expander shaft end seals for utility-scale supercritical CO₂ power cycles
- Conceptual design of a utility scale end seal capable of meeting the component-level and systemlevel objectives
- Thermodynamic optimization and preliminary design for a conceptual layout for a utility-scale sCO₂ power plant
- GE will develop face seals as a solution for end shaft sealing for SCO2 turbo expanders
- Conceptual design of a dedicated sCO₂ facility with enough fidelity to inform Phase II cost and schedule

BENEFITS

- Enables transformational goal of 10/metric ton CO₂ capture by 2035
- Thermodynamic cycle efficiencies of 50-52 percent or greater
- Reduced water consumption, reduced power block size and better thermodynamic integration with post-combustion CO₂ capture equipment

DRY GAS SEALING TECHNOLOGY

PROJECT INFORMATION

\$699.757

	Project Title: Development of Low-Leakage Shaft End Seals for Utility-Scale Supercritical Carbon Dioxide (sCO ₂) Turbo Expanders
	Award Number: FE0024007
	Project Duration: 10/01/14 - 08/31/19
	Key Technology: Supercritical CO ₂ Power Cycles
	Location: Niskayuna, NY
	FPM: Seth Lawson
	Project Performer: General Electric Co.
	PI: Rahul Bidkar
	Partners: Southwest Research Institute (SwRI)
E	BUDGET
	Total Award: \$8,617,402
	DOE Share: \$6,824,098
	Performer Share: \$1,793,304
	DOE Funding Plan
	EY14 EY15 EY16

\$1,875,712

Phase I – Fully funded in FY14 Phase II

High Inlet Temperature Combustor for Direct Fired Supercritical Oxy-Combustion

Southwest Research Institute

PROJECT NARRATIVE

- The project team seeks to develop a high inlet temperature oxy-combustor suitable for integration with direct-fired supercritical CO₂ power cycles for fossil energy applications
- R&D evaluation of direct-fired sCO₂ oxy-combustor has involved system engineering design and thermodynamic analysis to assess plant efficiencies, verify operating conditions and optimize plant configuration in conjunction with technical gap analysis
- The Phase II effort seeks to build a 'first-of-a-kind' 1 MW test facility in order to evaluate the sCO₂ oxy-combustor technology in an integrated system (which enables both component- and system-level testing) to address/reduce technical uncertainties

BENEFITS

- Efficient power generation with integrated carbon capture at up to 99 % of generated CO₂
- Advances state-of-the-art in high pressure, high temperature combustor design

Autoignition-Stabilized Combustor Concept for Direct Fired Supercritical Oxy-Combustion Cycle

PROJECT INFORMATION

Project Title: High Inlet Temperature Combustor for Direct Fired Supercritical Oxy-Combustion
Award Number: FE0024041
Project Duration: 10/01/14 - 03/31/20
Key Technology: Supercritical CO ₂ Power Cycles
Location: San Antonio, TX
FPM: Mark Freeman
Project Performer: Southwest Research Institute
PI: Dr. Jacob Delimont
Partners: Thar Energy, GE Global Research, Georgia Tech, University of Central Florida
BUDGET
Total Award: \$4,741,944 (Phase I plus Phase II)
DOF Share: \$3 793 540

Performer Share: \$948,404

DOE Funding Plan			
FY14	FY15	FY16	
\$600,000	-	-	Phase I – Fully funded in FY14
		\$3,193,540	Phase II – Fully funded in FY16

NETL Turbine Research

Goal – Develop technology toward achieving the program goal of 3-5% points increase in efficiency. *Approach* – Perform R&D in three important areas: Combustion, Heat Transfer and Advanced Cycles. Perform systems analysis to support research focus and verify performance targets.

<u>Pressure Gain Combustion</u> Improving efficiency through pressure increase across combustor.

Aerothermal and Heat

<u>Transfer</u>

Improving efficiency by increasing firing temperature and reducing cooling load.

Supercritical CO₂ Cycles

Improving efficiency through unique properties of supercritical CO₂ as a working fluid.

University Turbine Systems Research Program

- Support DOE FE Advanced Turbine Program goals
 - Addresses scientific R&D to develop advanced turbines
 - Focused on coal-derived syngas, H_2 , and other fossil fuels
- Goals advanced by universities, GT industry, and DOE FE
- UTSR Industrial Fellowship funded by GT manufacturers
- UTSR projects established through competitive FOA
 - open to all U.S. universities.
 - R&D topics support FE program and GT industry
- Annual UTSR workshop facilitates technical communications with industry, academia, and DOE
 - Open to the public, reviews of all UTSR and Advanced Turbines projects

2016 UTSR Program Participants

- Gas Turbines and the Power Generation Market
- Overview of DOE FE Advanced Turbines Program
 - Program Goals and Budget
 - Combustion Turbines for 65 % Efficiency
 - Turbomachinery for SCO2 Power Cycles
- Overview of DOE's Cross Cut Initiative SCO2 Power Cycle Program
 - DOE SCO2 CCI
 - Projects
 - Advanced Recuperators
 - 10 MW SCO2 Pilot Plant
- FE AT UTSR Request for Information
- Summary

DOE SCO2 Crosscut Initiative

- Nuclear Energy, Fossil Energy and Energy Efficiency and Renewable Energy collaborate on sCO2 power cycles
 - Coordinate efforts to solve common application challenges
- **Mission:** Address technical issues, mature technology, reduce risks towards commercialization of the sCO2 power cycle
- Design, build, and operate 10 MWe STEP (Supercritical Transformational Electric Power) indirect-fired sCO2 power cycle pilot-scale facility to demonstrate
 - Component performance
 - Cycle operability
 - Progress towards a lower cost of electricity (> 50 % cycle eff.)
- Base R&D portfolios within the three offices continue to address application specific development needs

Technology Development of Modular, Low-Cost, High-Temperature Recuperators for sCO2 Power Cycles

Thar Energy LLC

PROJECT NARRATIVE

- The team will complete engineering assessments, recuperator development plans for multiple advanced recuperator concepts
- Phase I: Evaluate design, cost, performance. Down select most promising concept
- Phase II: Detailed design, fabrication of 47 MWth recuperator

BENEFITS

- Scalable recuperator design with optimal performance/cost ratio
- Operability at high temperature and pressure

PROJECT INFORMATION

 Project Title: Technology Development of Modular, Low-Cost, High-Temperature Recuperators for sCO2 Power Cycles
 Award Number: FE0026273
 Project Duration: 10/01/2015 – 3/31/2019
 Key Technology: STEP
 Location: Pittsburgh, PA
 FPM: Seth Lawson
 Project Performer: Thar Energy LLC
 PI: Lalit Chordia
 Partners: Southwest Research Institute, Oak Ridge National Laboratory, Georgia Institute of Technology

BUDGET

Total Award: \$11,693,535.00 DOE Share: \$9,344,826.00 Performer Share: \$2,348,709.00

Baseline STEP Facility Layout 10 MWe Cycle Diagram

- **NE NATIONAL ENERGY** TECHNOLOGY LABORATORY

NETL Basis for Cost Estimate of STEP Facility

- Gas Turbines and the Power Generation Market
- Overview of DOE FE Advanced Turbines Program
 - Program Goals and Budget
 - Combustion Turbines for 65 % Efficiency
 - Turbomachinery for SCO2 Power Cycles
- Overview of DOE's Cross Cut Initiative SCO2 Power Cycle Program
 - DOE SCO2 CCI
 - Projects
 - Advanced Recuperators
 - 10 MW SCO2 Pilot Plant

• FE AT UTSR Request for Information

• Summary

Summary - UTSR Request for Information (RFI)

- RFI issued on September 29 and closed October 24
- Purpose of RFI
 - Obtain stakeholder input to formulate the next UTSR FOA
 - Identify technical R&D topics/subtopics that support:
 - Advanced gas turbine technologies for 65 % efficiency
 - Supercritical carbon dioxide based power cycles.

• 52 suggestions received outlining technical topics/subtopics

- Supporting advanced combustion turbines for 65 % efficiency
- Supporting SCO2 power cycles
- New areas were also suggested
- Please join us Thursday (11/3/2016) 9 11 AM for a more detailed and collaborative discussion of these results to help shape the future of the UTSR program

Summary

- generation landscapeTurbine based power generation is growing significantly
- The DOE Office of Fossil Energy Advanced Turbines (AT) Program is investing in advanced technology to support the 65 % CC efficiency goal and SCO2 power cycles
- UTSR is a significant part of the AT program
- Please join the UTSR RFI discussion on Thursday morning

• Abundant and low cost natural gas has changed the power

