

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

http://siemens.com/energy/power-generation/gas-turbines

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Towards a 65% CC system

DOE targets are driving a step change in GT combustion technology

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 3 01-Nov- 2016 CMC Advanced Transition

Towards a 65% CC system

SIEMENS

Brayton Cycle

- Plant output and efficiency improved by raising the top of the cycle
- i.e. Higher firing temperature and pressure.

Rankine Cycle

- Plant output and efficiency improved with better utilization of GT Exhaust energy.
- i.e. Higher bottoming steam temperature and pressure.

Source: Ibrahim et. al (2012)

65% CC efficiency targets Firing Temperature > 1700°C

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 4 01-Nov- 2016 CMC Advanced Transition

Siemens Solution to Program Challenge: Combustion Development

Combustion Technology "jumps" are required to shift NOx curve right

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 5 01-Nov- 2016 CMC Advanced Transition

Siemens Solution to Program Challenge: Combustion Development

Parallel Combustion approaches for NOx reduction

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 6 01-Nov- 2016 CMC Advanced Transition

Siemens Solution to Program Challenge: Combustion Development

Focus of this program is on Cooling & Leakage Air Reduction for Low NOx
 Lower required flame temperature for a given TIT → Reduced NOx

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 7 01-Nov- 2016 CMC Advanced Transition

Enablers: Advanced Transitions (AT)

SIEMENS

AHE + AT

- Developed during DOE-H2 program (DE-FC26-05NT42644)
- Allows for reduction of cooling air
- Low NOx at J-class conditions
- System residence time not optimized for 65% CC operating conditions

Advanced Transition (AT) \rightarrow Reduced Cooling air consumption

1

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 8 01-Nov- 2016 CMC Advanced Transition

Objective:

 Phase 2: Design a CMC inlet for Siemens Advanced Transition

Benefits:

- Reduction in Cooling Air → NOx reduction or RIT increase
- CO reduction (eliminate wall quenching)
- Reduced aero losses
 - Due to cooling air mixing
 - Due to cooling air ducting

Premise:

- Existing Siemens' CMC material
- No through-wall cooling (backside only)
- Shape conducive to CMC manufacture
- Durability demonstrated in 25K hr test
- Readily tested in combustor rigs

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Concept schematic

Experience base

- Siemens Hybrid Oxide CMC system (FGI thermal barrier)
- Filament wound combustor outer liner (made by COIC)
- Operated in Solar Centaur 50™ engine.
 - 25,404 hours / 109 cycles;
 - Bakersfield, CA
 - Still serviceable
- Surface & CMC temperatures representative of AT inlet

SIEMENS

SIEMENS

Benefits: Cooling Air Reduction

→ NOx emissions reduction at High Firing Temperatures

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle Efficiency Siemens' Hybrid CMC Technology

SIEMENS

Coating: FGI (Friable Graded Insulation) – Siemens patented material consisting of thermally stable hollow ceramic spheres closely packed in a ceramic matrix binder.

The HYBRID concept is a Siemens patented approach CMC offers: Reduction in cooling vs. TBC/metal

> **Increased surface temperature limit**

- The Siemens system is a HYBRID system: Oxide CMC coated with a unique TBC → FGI
- This keeps the oxide CMC at lower temp while providing overall system high temp capability
- This hybrid system overcomes a lot of the issues previously perceived for oxide CMCs

Substrate: COI Ceramic's AN720 oxide-oxide CMC system providing strain-tolerant, notch-insensitive behavior up to 1200°C

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle Efficiency CMC Technology Status

SIEMENS

Combining two high pay-off technologies individually developed & tested

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 12 01-Nov- 2016 CMC Advanced Transition

CMC Component Testing Summary

SIEMENS

- Bench testing
 - Mechanical, thermal, fatigue, impact, etc.

Ring segments (4 types), airfoils, subelements

- Rig testing
 - Simulated engine conditions
 - Durability under combined loadings
 - Subscale & Full Scale components

Combustors, Airfoils, Ring segments (4 types)

- Engine testing
 - Customer site / durability
 - BTF engine

Combustor

Ring Segment

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 13 01-Nov- 2016 CMC Advanced Transition

Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle Efficiency *Hybrid Oxide CMC Combustor Liner*

SIEMENS

- Siemens Hybrid Oxide CMC system (FGI thermal barrier)
- Filament wound combustor outer liner (made by COIC)
- Operated in Solar Centaur 50[™] engine.
 - 25,404 hours / 109 cycles;
 - Bakersfield, CA
 - Still serviceable
- Surface & CMC temperatures representative of AT inlet

This test demonstrated CMC durability in a turbine engine environment for representative component lifetime

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 14 01-Nov- 2016 CMC Advanced Transition

Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle Efficiency CMC Manufacturing Options

SIEMENS

<section-header>

Both manufacturing approaches are feasible for most AT inlet concepts
Concepts with out-of-plane features more conducive to fabric lay-up

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 15 01-Nov- 2016 CMC Advanced Transition

Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle Efficiency CMC Ring Segment Engine Test

SIEMENS

Full engine set: Tested successfully for > 50 hours

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 16 01-Nov- 2016 CMC Advanced Transition

Siemens Project Team

Siemens has assembled a multi-disciplinary team of internal experts and external vendors and partners to successfully execute this program.

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 17 01-Nov- 2016 CMC Advanced Transition

Schedule & Major Milestones

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Technology Development

SIEMENS

PHASE 1

Conceptual Design

PHASE 2 Technology Development & Testing

Manufacture & Combustor Rig Testing

Engine Testing

Technology Progression for Future Phases identified

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 19 01-Nov- 2016 CMC Advanced Transition

SIEMENS

CMC AT Concept Down-selection Process

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Heat Transfer → CMC with backside cooling

SIEMENS

Shell Air Circulation

Comparison of Approaches for High Temperature Components

Ox CMC with EBC Art Metal/TBC Insulating characteristic of Hybrid Oxide CMC enables use of low cooling coefficients (similar to levels in engine midframe)

Radiation Cooling

Radiation cooling method proven effective in previous combustion tests

Two Cooling Options:

 Shell air circulation → feasibility shown with 1D heat transfer
 Radiation cooling → used on Solar combustor liner design Both eliminate active (chargable) cooling

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Supporting CMC Data & Remaining Challenges

SIEMENS

Damage Accumulation & Life Prediction Tools

<section-header>Subelement & Component test dataSub-Element Testing +
System and Attachment
Behavior• Attachment features
• Coating adhesion
• Wear
• Thermal stress
• Abradability
• Impact
• Sealing
• Etc.• Sealing
• Etc.

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Remaining Design / Materials Challenges

- Sealing methods for high temperature
- Metal-to-CMC Interfaces:
 - Wear resistance (anti-wear coatings)
 - Contact stresses / inserts / compliant layers

Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle Efficiency *Micromechanics Modeling (MAC/GMC)*

- Constitutive model (fiber & matrix properties)
- Iteratively best-fit to a series of test data (different geometries)
- Matches stress-strain behavior of simple (uniaxial) and complex shape (multiaxial stress) test data
- Model calibrated and matches test data
- Works interactively with FEA

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

 Advanced Simulation Methods Calibrated to Lab and Sub Component Testing to Provide Accurate and Robust Design Rules.

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 24 01-Nov- 2016 CMC Advanced Transition

TBC Testing

Objective:

Simulate TBC failure under pseudo engine condition (high heat flux, backside cooling)

Application of HHFT:

- Down select coating
- Characterize CMC/Coating system behavior

Combustor Rig Testing

Siemens Clean Energy Centre Advanced Transition test rig

CMC Advanced Transition Inlet section will be tested in this dedicated rig facility (full scale; full pressure; full flow; full temperature)

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Page 26 01-Nov- 2016 CMC Advanced Transition

Acknowledgements

- This work is performed under US Department of Energy Award Number DE-FE0023955.
- This program is based upon prior work supported by the US Department of Energy, under Award Number DE-FC26-05NT42644.
- The Siemens team wishes to thank Dr. Seth Lawson, NETL Project Manager and Mr. Rich Dennis, NETL Turbine Technology Manager for the opportunity to collaborate on the development of these novel technologies.

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Answers for Energy.

Jay Morrison

Program Manager - Ceramic Matrix Composite Advanced Transition for 65% Combined Cycle Efficiency

Siemens Energy Inc. 4400 Alafaya Trail Orlando, FL 32826 Phone: +1 (407) 736-2000

E-mail: jay.morrison@siemens.com

Thank You. Questions?

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Hybrid Ox-Ox CMC Rationale

Reference ASME GT 2007-27532

Unrestricted © Siemens Energy Inc. 2016 All rights reserved.

Jonathan Shipper / Siemens Energy Inc.

Parsons 2007 - Glasgow

Siemens PG