A Unified Viscoplastic Strain Gradient Theory and its Applications

T. Nguyen, T. Siegmund, Purdue University, West Lafayette, IN 47907

Contact: siegmund@purdue.edu

Background

Strain gradients are known to affect plastic deformation at small scales and in strong gradients. How gradients affect viscoplasticity is currently not well understood and constitutive models are missing.

Theory: The SG-KM Model

Constitutive Formulation

FE-Implementation (ABAQUS UMAT)

Outcomes

Define a new viscoplastic constitutive model accounting for viscoplasticity, creep and hardening under the consideration of plastic strain gradients Implemented in FE code

Objective

Define a unified constitutive model and implement the model as a component of a FE code. Investigate load transients in a turbine disk. Investigate conditions at the creep crack tip.

Structure

Spin Up and Steady State

Transients in Tip Displacement & Rate

Outcomes

The KM model predicts transients not captured by a conventional Norton model SG delays creep failure but raises stresses SG affects local conditions, not overall response

Methods

Implement the constitutive model as a component of a FE code to analysis (1) a conceptual turbine rotor component and (2) a crack model considering transients in loads and plastic strain gradients.

Cracks

Modified Boundary Layer Model

Crack Tip Fields

Kocks-MeckingSG-KMImage: Signed strainSDImage: Signed strainImage: Signed strain

Outcomes

The SG-KM model predicts that GND (viscoplastic strain gradients) dominate over SSD (viscoplastic strains) and that the relevance of GND increases over time SG-KM predicts higher stresses than KM theory

This research was supported by the U.S. Department of Energy. Project Title: New Mechanistic Models for Creep-Fatigue Interaction in Turbine Components, DE-FE0011796, Dr. R. Burke PM -- PI. T. Siegmund, Purdue University