

THE UNIVERSITY OF TEXAS AT EL PASO **COLLEGE OF ENGINEERING**

A Guideline for the Assessment of Uniaxial Creep and Creep-Fatigue Data and Models

Calvin M. Stewart and Jack Chessa

NETL Kick-Off Meeting October 6, 2016

Outline

- Motivation
- Research Objectives
- Team
- Systematic Approach to Assessment
 - Task 2: Locate, Digitize, Sort, Store Experimental Data
 - Task 3: Uncertainty and Integrity of Experimental Database
 - Task 4: Mathematical Analysis and FEA of the Models
 - Task 5: Calibration & Validation Fit, Interpolation, Extrapolation of the Models
 - Task 6: Post-Audit Validation of the Models
 - Task 7: Uncertainty Analysis of the Models
- Gantt Chart
- Milestones
- Questions

Motivation

 Recent drives to increase the efficiency of existing fossil energy (FE) power plants and the development of Advanced Ultrasupercritical (A-USC) power plants, have led to designs with steam pressures above 4000 psi and temperatures exceeding 1400°F.

Motivation

- The existing FE fleet has an average age of 40 years.
- The Department of Energy has outlined a strategy of life extension for US coalfired power plants where many plants will operate for **up to 30 additional years of service**.

Plant Life Extension Program

• During Life Assessment, the integrity of components is assessed and the remaining service life estimated.

Based on Mitsubishi's Life Extension Program

Motivation

• An immense number of models have been developed to predict the deformation, damage evolution, and rupture of structural alloys subjected to Creep and Creep-Fatigue.

6

Research Objectives

• Of primary concern to FE practitioners is a determination of which constitutive models are the "best", capable of reproducing the mechanisms expected in an intended design accurately; as well as what experimental datasets are proper or "best" to use for fitting the constitutive parameters needed for the model(s) of interest.

RO1	RO2
Development of Aggregated	Computational Validation
Experimental Databases of	and Creep-Fatigue
Creep and Creep-Fatigue	Constitutive Models for
Data	Standard and Non-Standard
	Loading Conditions

Team

Dr. Stewart is an Assistant Professor in the Department of Mechanical Engineering at the University of Texas at El Paso. He directs the *Materials at Extremes Research Group (MERG)*. He has over 10 years of experience in the theoretical development and numerical implementation of constitutive models for creep, fatigue, oxidation, and creep-fatigue-oxidation interaction phenomenon. Dr. Jack Chessa is currently an Associate Professor of Mechanical Engineering at the University of Texas at El Paso. His research interest has been focused on the development of novel numerical methods for solving several challenging areas such as fracture mechanics, durability of high temperature ceramics as well as oxidation are reactions of evolving interfaces.

Recent Work

- Haque, M. S., and Stewart, C. M., 2016, "Finite Element Analysis of Waspaloy Using Sinh Creep-Damage Constitutive Model under Triaxial Stress State", ASME Journal of Pressure Vessel Technology, 138(3). doi: 10.1115/1.4032704
- Varela, L. A., and Stewart, C. M., 2016, "Modeling the Creep of Hastelloy X and the Fatigue of 304 Stainless Steel using the Miller and Walker Unified Viscoplastic Constitutive Models," Journal of Engineering Materials and Technology, 138(2). doi: 10.1115/1.4032319
- Haque, M. S., and Stewart, C. M., 2016, "Exploiting Functional Relationships between MPC Omega, Theta, and Sinh-Hyperbolic Models" ASME PVP 2016, PVP2016-63089, Vancouver, BC, Canada, July 17-21, 2016.
- Haque, M. S., and Stewart, C. M., 2016, "Modeling the Creep Deformation, Damage, and Rupture of Hastelloy X using MPC Omega, Theta, and Sin-Hyperbolic Models," ASME PVP 2016, PVP2016-63029, Vancouver, BC, Canada, July 17-21, 2016.

Systematic Approach to Assessment

Example for Creep Deformation

DEF: Standard and NonStandard

DataHigh AvailabilityModelsOften Calibrated

Limited Availability Rarely Calibrated

Systematic Approach to Assessment

Task 1: Maintain Project Management Plan

Task 2: Locate, Digitize, Sort, Store Experimental Data

Task 3: Uncertainty and Integrity of Experimental Database

Task 4: Mathematical Analysis and FEA of the Models

Task 5: Calibration & Validation – Fit, Interpolation, Extrapolation of the Models

Task 6: Post-Audit Validation of the Models

Task 7: Uncertainty Analysis of the Models

Locate, Digitize, Sort, and Store Data

Creep Data Creep-rupture Minimum creep strain rate Time to creep strain **Creep deformation** Stress relaxation **Fatigue Data** Strain-Life Cyclic Hysteresis loops Stress Amplitude per Cycle **Creep-Fatigue Data Tensile Hold Tests**

Established Data Sources

Locate, Digitize, Sort, and Store Data

Current & High Priority Data Sources

Organization	Database(s)	Access	Available Metrics
National Institute of Materials Science (NIMS)	MatNavi	Granted	Material properties, monotonic, creep rupture
Materials and Processes Technical Information System (MAPTIS)	 NASA Databases ASM International Databases Commercial Data 	Granted	Material properties, monotonic, creep deformation & rupture, fatigue curves
Oak Ridge National Laboratory (ORNL)	Gen IV Materials Handbook	Pending	Material properties, monotonic, creep, statistical properties

Creep Rupture Data (NIMS Database)

316SS Creep Rupture

Data points: 696

Locate, Digitize, Sort, and Store Data

- MetaData A set of data that describes the characteristic of a dataset.
- MetaData can be used to identify **sources of uncertainty** in our data.

Locate, Digitize, Sort, and Store Data

<?xml version="1.0" encoding="US-ASCII"?>

<!-- Possible XML format for various test data -->

<database>

<!-- here is a possible creep test data. Go to http://xmlgrid.net/ to validate the data -->

<experiment material="inconel 718" country="USA" laboratory="ORNL" reference="the big creep database" type="creep deformation" name="stewart101">

<data name="chemical composition" format="ascii" dtype="float" units="hours" rank="1"> 52.50 1.00 19.00 3.05 17.00 0.35
0.35 0.08 0.60 0.90 0.30 0.015 0.006 0.015 5.125</data>

<data name="time" format="ascii" dtype="float" units="hours" rank="1"> 0.0 1.0 2.0 3.0 4.0 5.0 </data> <data name="strain" format="ascii" dtype="float" units="mm/mm" rank="1"> .000 .001 .002 .005 .010 .020 </data> <data name="description" dtype="string"> "This is a basic creep test conducted by Dr. Calvin Stewart" </data> <data name="stress" dtype="float" units="MPa" rank="0"> 2000.0 </data><data name="tbd"/></experiment> </experiment></database>

Uncertainty and Integrity of Experimental Data

- Integrity Check
 - average line
 - upper and low bounds
 - standard deviations
 - coefficient of variation
 - box and whisker plots
 - factor of 2 bands
 - confidence intervals
 - coefficient of determination

 A parametric evaluation of the full database and individual datasets with regards to metadata will be performed to quantify the impact of experimental uncertainty on the material response.

Mathematical Analysis and FEA of the Models

Generate Model Database

Taxonomy of Models Material Constant Determination

Model Database

- Model Name (Year)
- Authors
- Primary Source
- Taxonomy
- Equations
 - Count
 - Functional form
- Material Constants
 - Count
 - Physical representation
 - Functional form

- Notes
 - Advantages
 - Disadvantages
 - Special remarks
- Analytical form of the Material Jacobian matrix (pseudo-Jacobian if necessary)

$$\mathbf{C}_{TOT} = \frac{\partial \boldsymbol{\sigma}_i}{\partial \boldsymbol{\varepsilon}_j}$$

USER MATerial (USERMAT)
 subroutine

Unification of Master Curve Models

		$P_{min,r} = \frac{\log(t_r) - \alpha_0 - \alpha_3 T^r}{\log(t_r) - \alpha_0 - \alpha_3 T^r}$		
		$(T^r - \alpha_2^r)^q$		
Model	Year	Parametric equation	Condition	Attribute
T M(1)	1050	$P_{IMP} = T(\log(t_r) + t_a)$	r = -1, q = 1	Linear
Larson-Miller	1952		, $\alpha_2 = \alpha_3 = 0$	
Managen Hafand	1052	$P_{\mu} = -\frac{\log(t_r) - \log(t_a)}{\log(t_a)}$	r=q=1,	Linear
Manson-Halerd	1955	$T_{MH} = T - T_a$	$\alpha_3 = 0$	
Manson Sugaan	1052	$P_{MS} = \log(t_r) - BT$	r = 1, q = 0,	Linear
Manson-Succop	1935		$\alpha_0 = 0$	
Om Shanhy Dam	1054	$P_{OSD} = \log(t_r) - Q / RT$	r = -1, q = 0	Linear
Orr-Sherby-Dorn	1934		, $\alpha_0 = 0$	
Coldboff Showby	1069	$P = -\frac{\log(t_r) - \log(t_a)}{\log(t_a)}$	r = -1, q = 1	Linear
Goldnoff-Sherby	1908	$T_{GS} = \frac{1}{1/T - 1/T_a}$, $\alpha_3 = 0$	
Modified Manson-	2016	$\log(t_r) - \log(t_a)$	r = 1, q = 1,	Linear
Haferd	2010	$\Gamma_{MMH} = \frac{T}{T}$	$\alpha_2 = \alpha_3 = 0$	
M D	1052	$p = \log(t_r) - \log(t_a)$	$r = 1, \alpha_3 = 0$	NT T
Manson-Brown	1955	$T_{MB} = (T - T_a)^n$		Non-Linear
Cusham Wallas	1055	$P = -\frac{\log(t_r)}{\log(t_r)}$	r=q=1,	Linear
Granam-wattes	1955	$T_{GW} = \frac{1}{T - T_a}$	$\alpha_0 = \alpha_3 = 0$	
		$L_{CD} = T - m\log(tr)$	r = q = 1	
Chitty-Duval	1963		$\alpha_0 = 0$,	Linear
			$T = \alpha_2 - \alpha_3$	
		$P_{a} = \frac{1/T - 1/T_{a}}{1/T - 1/T_{a}}$	Inverse of	Linear
White le may	1978	$I_{WM} = \frac{1}{\log(t_r) - \log(t_a)}$	Goldhoff-	Lineu
		1 / 2 / 4 / 2	Sherby	,
Mendelson-	1965	$P_{MRM} = \frac{\log(t_r) / \sigma^q - \log(t_a)}{(\pi - \pi)^n}$	Special Manson-	Non-Linear
Roberts-Manson	1705	$(T-T_a)^n$	Brown	

Name: Larson-Miller	Authors: Larson and Miller	Year: 1952
Model Equations:	Attribute:	
$P_{LMP} = T(\log(t_r) + t_a)$	Creep-RuptureMaster curve	

• Time-Temperature Parameter

	Linear iso-stress line
Number of constants: 2	
Constant terms, definition, unit:	
P_{LMP} , t_a : Larson-Miller parameter, Point of co	nvergence respectively, both are unitless
Sample plot:	
$\log(t)$ σ_{1} σ_{2} σ_{3} σ_{4} σ_{4} σ_{5} σ_{4} σ_{5} σ_{4} σ_{5} $\sigma_$	и и и и и и и и и и и и и и и и и и и
Figure 1. Larson-Miller creep parameterization.	Rupture time, It (H)
Note: (advantages/limitations/special remarks)	
Linear iso-stress line. For wide range of data exhibits inflection point	

References:

 $P_{LMP} = T(\log(t_r) + t_a)$

1. F.R. Larson, J. Miller Trans. ASME, 74 (1952), p. 765

Taxonomy of Models

Material Constant Determination

- Analytical Optimization for Simple Models
- Numerical Optimization for Complex Models (# of Matl Constants >> Variables)

- The calibrated models will be parametrically simulated across a full range of temperature, stress, and time to testing for **fit**, **interpolation**, and **extrapolation ability** of the models.
- Evaluate the credibility of characteristic curves produced by the models.
- Ideally, the best models will be able to predict extreme conditions and pass physical realism requirements

Parametrically explore the

Time-Temperature-σ/ε Map

and

Time-Temperature- $\Delta\sigma/\Delta\epsilon$ Map

Extreme Conditions for Creep Condition Creep Rupture Deformation $\sigma < 0$ $t_r \approx \infty$ $\dot{\varepsilon}_{cr} \approx 0$ $\sigma = 0$ $t_r = \infty$ $\dot{\varepsilon}_{cr} = 0$ $0 < \sigma < UTS$ $t_r \propto f(\sigma, T)$ $\dot{\varepsilon}_{cr} \propto f(\sigma, T)$ $\sigma = \text{UTS}$ $t_r \approx 0$ $\dot{\varepsilon}_{cr} >> 1$ $T \Rightarrow T_{\text{D-to-B}} \qquad t_r \approx \infty \qquad \dot{\varepsilon}_{cr} \approx 0$ $0.3T_m < T < T_m \qquad t_r \propto f(\sigma, T) \qquad \dot{\varepsilon}_{cr} \propto f(\sigma, T)$ $T_m \qquad t_r = 0 \qquad \dot{\varepsilon}_{cr} >> 1$

Note: σ is equivalent stress

Physical Realism Requirements						
Creep Rupture Requirements	Creep Deformation Requirements					
• The isotherms do not cross-over,	Minimum creep strain rate isotherms					
come-together, or turn back;	• do not cross-over, come-together, or turn back;					
• The extrapolated isotherms produce a	 transitions from power-law creep to breakdown; 					
sigmoidal behavior if a sigmoidal	Creep deformation					
response is expected in material;	\circ growths with σ and T; isostress lines do not					
• Both mechanism transition stresses	cross-over, come-together, or turn back;					
decrease with temperature;	o regime dominance (primary at low stress and					
• $T_{\text{D-to-B}} < T < 0.3T_m$, the isotherms for	temperature, secondary at intermediate stress					
creep-rupture are tightly bunched	and temperature, tertiary at high stress and					
together:	temperature) depends σ and T ;					
• $0.3T < T < T$, the isotherms become	• Increasing σ and T coincidences with increased					
more dispersed	rupture strain as the creep deformation					
more disperseu.	mechanisms change.					

Diffusional Flow / Harper Dorn Controversy Kassner, Kumar, and Blum 2007 Blum and Maier 1999

Post-Audit Validation

• Post-audit validation will provide insight into the ability of the constitutive models to reproduce various **non-standard** test responses.

POST-AUDIT VALIDATION

Experimental Capabilities

<image/>					
Team MERGe	100 kN	50 kN	50 kN	5 kN	200 N
Challenger-Columbia Structures and Material	s Research	-150 to Gas Env.	Rm to Gas Env.		BioReactor Liquid/Gas

Facility

This 5,500 ft² facility houses state of the art materials synthesis, processing, and testing equipment for developing advanced materials research for next generation energy and aerospace systems. Dr. Stewart's Materials at Extreme Research Group (MERGe) is housed in this facility and he maintains the equipment above.

Uncertainty Analysis of the Models

- The model performance will be evaluated with respect to experiment uncertainty.
- The repeatability and stability of extrapolations using the models will be tested across boundary conditions regimes (short term creep, long term creep, low cycle fatigue, high cycle low frequency fatigue, creep-fatigue interaction, etc.) and when the database is culled by 50% overall and 10% in the long term creep and creep-fatigue interaction regime.
- By breaking the data and model performance into categories and executing this uncertainty matrix, the bias in the experimental data can be separated from model performance.

Uncertainty Analysis of the Models

Uncertainty Analysis of the Models

Creep Deformation / Hysteresis Loops $NMSE = \frac{1}{n} \sum_{i=1}^{n} \left[\left(X_{sim,i} - X_i \right) / X_{max} \right]^2, \quad OBJ = \sum_i NMSE_i;$

Rupture and/or Cycles to Failure $Z_{CRMS} = 10^{2.5CRMS}, \quad CRMS = \sqrt{\frac{\sum \left[\log(t_r) - \log(t_{r,sim})\right]^2}{n-1}};$

Final Assessment

• The results of the mathematical/FEA, standard, nonstandard, and uncertainty analysis will be used to assign performance letter grades (A, B, C, D, or F) to each model for each loading condition, phenomena, and regime of interest.

Gantt Chart

GANTT	\geq	2016	2017	2018	2019
Name	Begin date	Apr May Jun Jul Aug Se	p Oct Nov Dec Jan Feb Mar Apr May Jun '	Jul 'Aug 'Sep 'Oct 'Nov 'Dec 'Jan 'Feb 'Mar 'Apr 'May 'Jun	'Jul 'Aug 'Sep 'Oct 'Nov 'Dec 'Jan 'Feb 'Mar 'Apr 'May 'Jun 'Jul 'Aug 'Sep
 A Guideline for the Assessment of Uni. 	9/1/16	4/14/16			
Project Management and Planning	g 9/1/16	—			•••••
 Maintain Project Managemen. 	9/1/16				
 Quarterly and Annual Reportin 	g9/1/16				
Facility Planning	9/1/16				
 Maintain Data, Safety, and Qu. 	9/1/16				
 Final Reporting 	9/1/16				
😑 🍳 Locate, Digitize, Sort, and Store Cr.	9/1/16	—			
 File Format and Storage Hierar 	9/1/16				
 Locate Data Sources 	9/1/16				
 Build Digital Database 	10/3/16				
 Sort Data using Test Informati. 	1/2/17				
😑 🔍 Uncertainty of Creep & Creep-Fati	3/1/17				
 Plot Characteristic Curves 	3/1/17				
 Explore the Statistical Dispersi 	. 5/3/17				
Mathematical Analysis and FEA	9/1/16	/			
 Analytical Solution & MACHO 	9/1/16				
 Workbooks and USERMATs 	9/1/16				
 Calibration and Validation 	9/4/17			tious	
 Determine the Matl Props. 	9/4/17		Стеер Стеер-ға	ligue	
 Fit, Interpolation, and Extrapol. 	9/4/17				
 Credibility and Physical Realism 	n 9/4/17				
 Rank Integrity of Datasets 	9/28/17				
Post-Audit Validation	9/1/17				
Locate Existing NonStandard	. 9/1/17				
 Conduct Extra Experiments at . 	9/1/17				
 Simulate NonStandard Tests 	9/1/17				
 Credibility and Physical Realisr 	n 6/1/18				
Uncertainty Analysis	9/3/18				
Performance respective to BCs	9/3/18				
 Performance Irrespective of BC 	s9/3/18				
Cumulative Performance	9/3/18				
 Repeatibility and Stability of E. 	12/6/18				
E Final Assessment	3/1/19				
 Mathematical Performance Standard B. Construction 	3/1/19				
Standard Performance	3/1/19				
NonStandard Performance	3/1/19				
 Uncertainty 	3/1/19				

Milestones

Mile-stone	Title	Description	Success Metrics	Reporting	Qtr	Date	Done?
Phase 1							
М1	P91 and 316SS Database Compiled	An exhaustive database of high integrity data.	Sorted excel workbooks	Summarized in Quarterly Report	Y1-Q4	9/1/2017	NO
M2	Uncertainty Analysis of Databases	The databases are analyzed according to material and equipment/test related uncertainties	Separation of systematic and random variables	Summarize results in Quarterly Report	Y2-Q2	3/1/2018	NO
МЗ	Topical Report	"A Guideline for the Assessment of Creep and Creep-Fatigue Data"	Submission	Emailed to Program Manager	Y2-Q2	3/1/2018	NO
Phase 2							
M4	Mathematical Analysis Report	Document describing the mathematical form and material constant determination procedure of all models	Completed Document	Summarize results in Quarterly Report	Y1-Q4	9/1/2017	NO
M5	Calibration and Validation	Fit, Interpolation, and Extrapolation of Models	Material constants and characteristic creep curves	Summarize results in Quarterly Report	Y2-Q4	9/1/2018	NO
M6	Post-Audit Validation	Simulations and Experiments under complex loading conditions	Blind Simulations compared to the experimental data	Summarize results in Quarterly Report	Y2-Q4	9/1/2018	NO
M7	Model Uncertainty	Parametric exercise of models against creep data uncertainty	characteristic creep curves for different datasets	Summarize results in Quarterly Report	Y3-Q2	3/1/2019	NO
M8	Final Assessment	Letter Grade score of models for mathematical/FEA, calibration validation, and post-audit validation	A table listing the performance of each model under different boundary conditions and regimes of interest	Summarize results in Quarterly Report	Y3-Q4	9/1/2019	NO
M9	Topical Report	"A Guideline for the Assessment of Creep and Creep-Fatigue Models" & "Recommendations for Improved Creep-Fatigue Models"	Submission	Emailed to Program Manager	Y3-Q4	9/1/2019	NO
Outside Budget Pe	riods						
M10	Final Report	Summary of experimentation, findings and data	Final	Report	Y4-Q1	12/31/2019	NO

In Preparation. The Next 6 months...

- ASME PVP 2017
 - Time-Stress Parameters in Continuum Damage Mechanics
 - A Guideline to Representative Stress Model Selection for Multiaxial Creep
 - Development of a Stepped Iso-Stress Method Accelerated Creep Test for Metallics
- Nuclear Material Design
 - Model Transformations of Theta Projection, MPC Omega, and Sin-Hyperbolic Creep Deformation, Damage, and Life Prediction Models
- ASME Journal of Pressure Vessel Technology (Special Issue)
 - A Review of Master Curve Models for Creep-Rupture

Questions?

Calvin M. Stewart Assistant Professor Department of Mechanical Engineering The University of Texas at El Paso <u>cmstewart@utep.edu</u> <u>me.utep.edu/cmstewart/</u>

The goals of MERG are to:

- Expand the UTEP's capability to conduct **experimental research** that replicate the extreme boundary conditions experienced by modern and advanced materials.
- Develop **theoretical models** that capture the key phenomena (at appropriate time- and length-scales) that enable the prediction of constitutive response, damage evolution, and component life at a high fidelity.
- Design **numerical tools** to facilitate the rapid implementation of theory into academia, government, and industry.

From Materials to Models

Experimental Methods

• Subjecting small samples to mechanical test conditions bearing similarity to larger structures

Theory Development

- Applying of theories of elasticity, plasticity, viscoplasticity, etc.
- Developing constitutive models and life prediction equations from the experimentally observed behavior

Numerical Modeling

 Using appropriate continuum and/or non-continuum mechanics based numerical codes to simulate the materials response

Post-Audit Validation

• Evaluate the physical-realism of simulations through parametric simulations compared to blind experimental data.

Design

Outcomes

- Experimental Database of Standard and NonStandard Data
- Library of Validated Creep and Creep-Fatigue Models
- Topical Report A guideline to the assessment of creep and creep-fatigue data
- Topical Report A guideline to the assessment of creep and creep-fatigue models
- Final Report
- Conference papers
- Journal articles