Interpretation of Impedance Spectroscopy Data on Porous LSM Electrodes

Giuseppe F. Brunello¹, William K. Epting¹, Juwana de Silva^{1,4}, Paul A. Salvador^{1,5}, Shawn Litster^{1,4}, Harry Finklea^{1,5}, Yueh-Lin Lee¹, Dane Morgan^{1,6}, Kirk R. Gerdes¹, David S. Mebane^{1,2} ¹National Energy Technology Laboratory, U.S. Department of Energy ²Department of Mechanical and Aerospace Engineering, West Virginia University ³Department of Mechanical Engineering, Carnegie Mellon University ⁴Department of Chemistry, West Virginia University ⁵Department of Materials Science and Engineering, Carnegie Mellon University ⁶Department of Materials Science and Engineering, University of Wisconsin-Madison

Introduction:

This study uses Bayesian Analysis in conjunction with microstructural data from Xray tomography to analyze impedance data from a symmetric porous LSM electrode button cell

Figure 1: Schematic of the electrochemical cell. The TPB length is obtained through X-ray tomography.

Electrochemical Model:

A finite volume one dimensional model solved in phase space using the Nernst-Planck equations for species' migration and linearized kinetic equations.

Dissociative adsorption: $\frac{1}{2}O_2(g) + Mn_B^x + V_{ad}^x \leftrightarrow O_{ad}' + Mn_B^i$ Incorporation: $O'_{ad} + V'_O + Mn^x_B \leftrightarrow O^x_O + Mn^{\cdot}_B + V^x_{ad}$ Vacancy Transfer: $O_O^x + V_{O,YSZ}^{"} \longleftrightarrow O_{O,YSZ}^x + V_O^{"}$ **Triple Phase Boundary:** $\begin{array}{c} O_{ad}' + V_{O,YSZ}^{\cdot \cdot} + Mn_{Mn}^{x} \longleftrightarrow V_{ad}^{x} + O_{O,YSZ}^{x} + Mn_{Mn}^{\cdot} \end{array}$ Schottky:

nil $\leftrightarrow 3 V_{O}^{"} + V_{La}^{''} + V_{Mn}^{''}$

Figure 2: These chemical equations' thermodynamic and linearized kinetic equations were used

ENERGY | National Energy Technology Laboratory

Bayesian Analysis:

Bayes' theorem provides a way to update prior belief given a experimental data to obtain a posterior

Figure 3: Bayes' theorem ties together experimental data, a physical model and a set of Priors to obtain a posterior distribution.

Priors:

The probability distribution of a model's parameter (the unconditional probability)

Ρ(θ) P(θ|y) **Good Prior O**True **O**uppe

Figure 4: Good priors accelerate the search in parameter space and produce better results

Parameter	Units	Prior	Bounds	Parameter	Units	Prior	E
ΔH_{ads}	eV	N(-1.5,0.5)	-3 to 0	ΔH_{3PB}^{+}	eV	Uniform	
ΔS_{ads}	J/molK	N(-200,25)	-250 to -100	ΔS_{3PB}^{\dagger}	J/molK	Uniform	-5
ΔH_{inc}	eV	N(-1,0.5)	-3 to 1	ΔH_{2PB}^{\dagger}	eV	Uniform	
ΔS_{inc}	J/molK	Uniform	-100 to 100	ΔS_{2PB}^{\dagger}	J/molK	Uniform	-5
ΔH_{ads}^{+}	eV	Uniform	0 to 4	Q_{θ}	eV	Uniform	
ΔS_{ads}^{\dagger}	J/molK	Uniform	-150 to 200	κ _θ	m²/s	Uniform	10
ΔH_{inc}^{\dagger}	eV	Uniform	0 to 5	Q _v	eV	N(0.65,0.2)	
ΔS_{inc}^{\dagger}	J/molK	Uniform	-100 to 200	Κ _ν	m²/s	Uniform	10
$\Delta H_{schottky}$	eV	N(4.5,0.25)	3 to 5.5	C _{miec-YSZ}	F/m ²	N(1e-3,3e-3)	10
$\Delta S_{schottky}$	J/molK	Uniform	-30 to 100	C _{miec-gas}	F/m ²	N(0.01,0.05)	10

Table 1: The priors used to obtain figure 6. Note that some priors are uninformed.

Posterior:

The probability distribution of a parameter given data. This is obtained once a good fit to the experimental data is obtained

Figure 5: A family of well fitting parameters (posterior) were found using priors that were too broad

			-		C .	
Parameter	Units	Old Value		Parameter	Units	Old Value
ΔH_{ads}	eV	-0.87		ΔH_{3PB}^{+}	eV	1.34
ΔS_{ads}	J/molK	-163		ζ_{3PB}	mol/m ²	2.1e-16
ΔH_{inc}	eV	-2.55		ΔH_{2PB}^{\dagger}	eV	1.78
ΔS_{inc}	J/molK	-99.0		ζ_{2PB}	mol/m ²	3.9e-9
ΔH_{ads}^{\dagger}	eV	1.88		Q_{θ}	eV	1.42
ζ_{ads}	mol/m ²	1.0e-6		κ _θ	m²/s	3.8e-9
ΔH_{inc}^{\dagger}	eV	0.99		Q _v	eV	1.73
ζ_{inc}	mol/m ²	2.55e-11		Κ _ν	m²/s	2.1e-9
$\Delta H_{schottky}$	eV	3.85		C _{miec-YSZ}	F/m ²	1.60e-3
$\Delta S_{\text{schottky}}$	J/molK	23.6		C _{miec-gas}	F/m ²	35

Table 2: The mean of the parameters' posterior used in figure 5.

mag Impedance vs. log Frequence

Figure 6: The search for a solution is a random walk. A low frequency peak is starting to emerge

Conclusions:

Previously, the solution found had a large capacitance and activation energy (30 F/m² and 1.7 eV). A new solution is currently being found.

Acknowledgement: This project was supported in part by an appointment to the Internship/Research Participation Program at the National Energy Technology Laboratory, U.S. Department of Energy, administered by the Oak Ridge Institute for Science and Education.

