Nickel Based Brazes for Planar Solid Oxide Fuel Cell Applications

Quan Zhou, Yuxi Ma, Tridip Das, Dr. Yue Qi, Dr. Jason D. Nicholas, Dr. Thomas R. Bieler Department of Chemical Engineering and Materials Science Michigan State University, East Lansing, MI 48824-1226, zhouqua3@egr.msu.edu

Introduction

MICHIGAN STATE

UNIVERSITY

Solid oxide fuel cells (SOFCs) are power generation devices that can convert the chemical energy from a wide range of fuels and energy-carriers directly into electricity with high efficiency [1]. However, one of the major challenges for the viability of commercial SOFC devices is the development of suitable sealing technologies for the long-term separation of the air and fuel in the system at high temperature ($\sim 750^{\circ}$ C).

The solution that is widely utilized in industry is the reactive air brazing (RAB) of Ag-based brazes. However, due to the inherent high diffusivity of both H_2 and O_2 in silver (Figure 1a) [2], the diffused H_2 and O_2 react to form micro-pores in the braze matrix (Figure 1b) that eventually degrade the seal, reduce the mechanical robustness of the joint, and limit the lifetime of commercial SOFC devices to $\sim 10,000$ hours [3].

Proposed Strategy

Here, a computationally aided approach is proposed to design a new, self-passivating braze that will be suitable to replace the current Ag-based braze and prolong the lifetime of SOFC devices.

Table I. Braze requirements

						3011uu3.1	122.5 C		- 800				
Design Parameter	Target Values	Justification			0.2 -				calib	pration tes	t and s	ar	
Solidus Temperature (Ts)	$900^{\circ}C \le Ts \le 1015^{\circ}C$	So the braze is solid during SOFC operation & does not alter the microstructure of previously made layers	• Computation candidate	onally identify alloy systems	0.0 -0.2 -				⁶⁰⁰ melt ⁴⁰⁰ are	ing point shown	determi in Fi	na g.	
Oxidation Resistance	No oxidation or limited oxidation before passivating surface oxide is formed	kidation or limited kidation before ssivating surface vide is formedTo ensure a stable joint, also to prevent O2 from getting into the braze		with acceptable melting ranges.Physically fabricate		-0.4 -0.6 Temperature 0 50 100 150 200 250 300 350 400 Ni2OTa7Si Sample results are summar Table III where gre							
Wetting (θ) and Bonding on Both Faying Surfaces	$0^{\circ} \le \theta \le 60^{\circ};$ Interdiffusion or new phase formation	To ensure that the braze spreads through the joint and forms good bonding at both interfaces	candidate perform cl with variou	alloys and naracterization s techniques	Figure 3. Example DSC measurement and calibration indicate alloys that not meet) the designable III DSC Results and Preliminary Oxidation Resistance for Ni-based Braze								
Mechanical Stability	Sufficient Ductility or Compatible CTE	To maintain mechanical robustness during longterm SOFC application and thermal cycling	with valies	b teeningaes.	Alloy Composition	48 hr 750°C Oxidation Resistance in Air	Solidus Temperature	Liquidus Temperature	Alloy Composition	48 hr 750°C Oxidation Resistance in Air	Solidus Temperature	I Te	
					Ni43.5Mn14.8Nb Ni48 5Mn14 6Mo	Poor Poor			Ni7Si10Ta		Too High (1127.4)	T (
	Mater	ials Characterization and Analysis: XRD. XP	S. EDS.		Ni50Mn5Si	Poor			Ni71.5Ti	Extremely Poor	()		
	Electro	onic/Optical Microscopy, Mechanical Tests	etc.		Ni36.9Mn11Si				Ni41Ti17Nb2Al	Fair			
Computation	onal		All 🔪		Ni52.2Mn10.9Ta	Poor			Ni41Ti17Nb3Al	Poor			
Selection Base	ed on Me	ting point Surface A	ctive Pass?		Ni26.0Mn22.4Si				Ni41Ti17Nb5Al	Fair			
	de	pressants: passivation elements:	: Cu, etc.;	lests	Ni4.5Si7.0Cr	Excellent	Excellent	Excellent	Ni42.5Zr2Al3.5Si	Poor			
Ļ	Si, I	B, P, Al, Cu layer formers: Ti, B		(B, Fe Free BNi2)	Lixeenent			Ni9Zr11Nb4Si	Poor				
Candidate	e	etc. Cr, Al, Si etc. mecha	nical perty		Ni4.5Si7.0Cr3.1B3.0Fe (Commercial BNi2 Containing Iron)	Excellent	Excellent	Excellent	Ni35Zr13.3Y Ti15Ni15Fe	Extremely Poor Poor	Good (1007.2)		
Systems		DSC Test for	ents.	Long-term Test	Ni5Si2Cr60Al	Door	Too High	Too High	Ti32Ni8Cr	Poor	Good (975.5)	(
Physical San		Range		Conditions	NI351201a	FOOI	(1132.1) Too High	(1138.0) Too High	Ni17Zr5.5Al	Poor	Too High (1207 4)	T C	
Fabrication and Control	Quality	TGA Isothermal Test			Ni7Si20Ta	Good	(1122.9) Good	(1139.1) Good	Ni15Zr3.5Si2Al	Poor	Good (1060.4)	<u> (</u>	
		for Surface Passivation	$\overline{\mathfrak{S}}$	ļ		Good	(1057.6) Good	(1068.0) Good	Ni30In5Zn	Good	Good (917.1)		
+	< I I				Ni7Si20Ta3B	Good	(1059.6)	(1086.8)	N:41 (In (ante stic))	Card	Good		
Candidate		(Surface Pre-treatments) (Other Brazing Techniques: Diffusion Brazing, TLPB, nanoparticles etc.)	d Mechanical Tests for Bonding	New Braze for SOFCs	Ni 10Si 20To	Excellent	Too High	Too High	IN141.4In (eutectic)	Good	(916.0)		
Samples					NIIUSI201a	Excellent	(1124.1)	(1162.9)	N:10T-70:1D		Good	ı	
					Ni7Si32Ta1B	Good	Good	Good	11101a/511B		(1033.7)		
							(1059.3)	(1070.1)	Ni10Si	Excellent	Too High	T	
					Ni7Si32Ta	Marginal	100 High (1125 4)	100 High (1146 1)			(1120.3)		
Figure 2. Design strategy flowchart					Ni7Si25Ta		Too High	Too High	Ni10Si1B	Excellent	(992.0)		
							(1124.5)	(1137.9)	Ni7Ta2Si	Marginal		I	

Computationally Identified Braze Compositions

The Thermo-Calc[©] software was used to find candidate alloy systems within the target melting range for the brazing application. Alloy systems in green boxes below are promising candidates (Green indicates candidate alloys within liquidus and solidus temperature in the target range).

Table II. Candidate Ni-based Alloy Systems

Melting Point and Oxidation Behavior I

The above candidates were fabricated through arc-melting and examined with energy dispersive X-ray spectroscopy (EDS) for chemical homogeneity; then mechanically sectioned for further testing. Thermogravimetric analysis (TGA) were performed in air at 750 °C to quickly identify alloys with superior oxidation resistance. Differential

Temp. /°C scanning calorimetry (DSC) also performed to was ¹²⁰⁰ measure the melting range candidate alloys. L₁₀₀₀ Of representative

> sample ination g. iminary ized in en (red) net (did criteria.

Melting Point and Oxidation Behavior II

Figure 4a shows the TGA results of some Ni-Si(Ta,B) alloys. The Ni-10Si(B) samples showed better oxidation resistance than the commercial BNi2 braze. Increased Ta additions degrade the oxidation resistance, but successfully reduce the liquidus temperature of Ni-10Si alloy by ~60 °C. Also, with 1 wt.% B addition, the Ni20Ta7Si1B sample showed interesting oxidation mechanism that may provide passivation.

Figure 4. (a) Surface area normalized weight gain of different samples at 750 °C in air; (b) Backscatter electron images (BSE) of TGA tested sample cross-sections

Wetting and Braze Joint Manufacture

Fig. 5a and 5b shows that the wetting of Ni-based braze materials on different substrates as well as Cu on YSZ. Here a multilayered brazing method is explored and a braze joint was successfully produced as shown in Fig 5c. Optimization of this design regarding materials selection, layer thickness and surface pre-treatments is underway.

Conclusion

Too High

(1140.3)

Good (1037.7)Good

(1025.1) Too High (1221.4.4)

Good (1066.2) Good

(923.1) Good (926.2)

Good (1074.3)

Too High

(1222.5) Good

(1032.8)

1. A systematic computation-experiment approach was developed to search for, fabricate, and characterize braze alloys for SOFC application. 2. A new multilayered brazing method was explored using a multilayered approach and a joint was successfully produced.

Acknowledgement: This material is based upon work supported by the Department of Energy under Award Number DE-FE0023315.

References

[1] Wachsman, E.D. and K.T. Lee, Lowering the Temperature of Solid Oxide Fuel Cells. *Science*, (2011). [2] C. Smithells, W. Gale, T. Totemeier. Smithells Metals Reference Book. 8th ed. [3] Bause, T., et al., Damage and Failure of Silver Based Ceramic/Metal Joints for SOFC Stacks. *Fuel Cells*, (2013).

