Atomic-Scale Insights into Long-Range Charge Transfer in Lanthanum Strontium Ferrite

Tridip Das, Dr. Jason D. Nicholas, and Dr. Yue Qi*

Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI dastridi@msu.edu, jdn@msu.edu, yueqi@msu.edu

1. Introduction	2. Computational Approach
In mixed ionic electronic materials (MIEC) the bulk oxygen vacancy concentration is altered by changing cation oxidation states. ¹	 Computational studies were performed using Density Functional Theory (DFT) and Thermodynamics.
For MIEC material like lanthanum strontium ferrite (LSF) this can be summarized as: ²	• $U = 3$ was selected to give LaFeO ₃ and SrFeO ₃ magnetic moments and lattice parameters comparable to the experimentally measured values.
$2Fe_{Fe}^{\bullet} + O_0^{x} \rightarrow \frac{1}{2}O_{2(g)} + V_0^{\bullet\bullet} + 2Fe_{Fe}^{x} $ [1] however, the localized or distributed nature of the electrons generated from the oxygen vacancy $(V_0^{\bullet\bullet})$ formation reaction (Eqn. 1) remains unknown.	 DFT+U was used to calculate the oxygen vacancy formation energy in supercells with varying size and a single oxygen vacancy, mimicking a broad range of oxygen nonstoichiometry.
Further, in $La_{1-x}Sr_xFeO_{3-\delta}$ the La/Sr ratio producing the highest $V_0^{\bullet\bullet}$ concentration remains unknown.	 The long-range charge transfer polaron volume was predicted in a dilute (non-interacting) oxygen vacancy scenario.
Therefore, the objective of this work is to determine 1) how the electron distribution impacts the location and energetics of $V_0^{\bullet\bullet}$ formation, and 2) the	• A thermodynamic model was developed to predict oxygen vacancy site fraction (X) as a function of temperature for both interacting and non-

temperature and La/Sr ratios that maximize the $V_0^{\bullet\bullet}$ concentration.

interacting vacancies.

3. Long Range Charge Transfer in $La_{1-x}Sr_xFeO_{3-\delta}$

- In LaFeO_{3- δ}, oxygen vacancies alter the oxidation state of the first nearest neighboring Fe atoms. The shape of polaron is ellipsoidal, as shown in Fig (a).
- In rhombohedral LSF55, oxygen vacancies alter the oxidation state of four second nearest neighboring Fe atoms. The polaron forms a quarter of a "pancake", as shown in the Figs (b-c).
- In SrFeO_{3- δ} and cubic La_{0.5}Sr_{0.5}FeO_{3- δ} (LSF55), oxygen vacancies alter the oxidation state of all the second nearest neighboring Fe atoms. The shape of polaron is "pan-cake" like, as shown in Figs (d-f).

• Fe *d*-orbital splitting explains why the extra electrons generated by Eqn. [1] cause the Fe polyhedra to adopt the shapes shown in (g), (h), and (i) for LaFeO_{3- δ} (5 unpaired *e*), SrFeO_{3- δ} (4 unpaired *e*), and LSF55 (4.5 unpaired *e*).

4. $\Delta E_{vac}^{\prime} \uparrow \text{ with } \downarrow x + \text{ on } \text{Fe}^{x+}$

5. Thermodynamic Extension to High Temp from DFT Calc Energy

