In-Operando Evaluation of SOFC Cathodes for Enhanced ORR Activity and Durability

Eric D. Wachsman University of Maryland Energy Research Center

www.energy.umd.edu

Gil Cohn

US Department of Energy, National Energy Technology Laboratory, Contract No. FE0026190 10/01/2015-03/31/2017

Lourdes Salamanca-Riba, Christopher Pellegrinelli, Yi-Lin Huang, Joshua Taillon US Department of Energy, National Energy Technology Laboratory, Contract No. FE0009084 09/01/2012-08/31/2015

University of Maryland, College Park, USA

Background - Limitation of ORR from EIS

Background - Experimental vs. Real Microstructures

Real Cathode	Heterogeneous Catalysis	SIMS Depth Profile	Conductivity Relaxation	Heterostructure
		Bulk Sampl	e Thin Film	
Structure/Morphology • Random crystallogra • 3-phase-solid-gas in ORR Kinetics • Surface controlled		 Random (<i>bulk</i>) to or crystallographic fac 2-phase-solid-gas in Bulk samples diffusion Thin film samples su but strained 	es nterface on controlled	 Single crystal face 3-phase-solid-gas interface Surface controlled but strained and only for specific crystallographic orientation
Kinetic Parameters				
• k _{ex} , k _{in} , D _{surf} , D _{b/gb}	• k _{ex} , k _{in} , D _b , (D _{surf})	• D _{b/gb} (k _{in})	• k _{in} , D _b , (D _{surf})	• k _{in} , D _{surf} , D _{b/gb}
Polarization Bias current 	• OCP	• OCP	Small current	OCP & bias current
In-Situ O ₂ Exchange Analysis • Limited	Excellent	Limited	perturbation Limited 	Limited
In-Operando				

Background - Fundamental ORR Mechanisms

- Switch gas to separate solid vs gas species contribution to mechanism

MARYLAND

Energy Research Center

Fundamental ORR Mechanisms - Catalysis

ORR Reaction Mechanisms in Presence of H₂O and CO₂

ISTPX of LSCF in 25000ppm O2 with 6000ppm D2O

O₂ exchange with lattice ¹⁸O

Mass of:
$${}^{18}O = 18$$

 $H_2{}^{16}O = 18$
 $D_2{}^{16}O = 20$
 $D_2{}^{18}O = 22$

D₂O exchange with lattice ¹⁸O

D₂O and O₂ exchange with lattice ¹⁸O

ISTPX of LSCF in 25000ppm O₂ with 6000ppm D₂O

Temperature and PO₂ Dependence of LSCF in D₂O

Temperature and PO₂ Dependence of LSCF in D₂O

Water Exchange on LSCF vs LSCF-GDC Composite Cathodes

- LSCF composite significantly broadens temperature range of water exchange dominance
- Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases

MARYLAND Energy Research Center

Water Exchange on LSM vs LSM-YSZ Composite Cathodes

- LSM-YSZ composite demonstrates much greater water exchange than LSM or YSZ at much lower temp
- Composite effect for LSM-YSZ much greater than for LSCF-GDC
- Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases

Energy Research Center

Comparison of ISTPX with EIS for LSCF-GDC in H₂O

MARYLAND Energy Research Center The presence of 3% H₂O effects the low frequency arc at 450° C but not at 750° C consistent with the results obtained from ISTPX.

Comparison of ISTPX with EIS for LSCF-GDC in CO₂

H₂O Impact on LSM/YSZ Microstructural Change

PB activity fraction

60

40

20

Air

Active

Air-Cathodic H₂O-Anodic H₂O-Cathodic

- H₂O under cathodic polarization decreases LSM phase connectivity (ohmic impedance)
- H₂O under cathodic polarization decreases fraction of connected "active" TPBs (nonohmic impedance)

MARYLAND **Energy Research Center**

In-Situ Conclusions/Outcomes

- Integrated heterogeneous catalysis, polarization, and microstructural characterization to provide fundamental understanding of cathode ORR and degradation mechanisms
- Demonstrated LSCF is more active than LSM and has different ORR mechanism
- H_2O (and CO_2) actively participate in ORR for both LSCF and LSM
- Identified temperature and gas composition regions where H₂O dominates O₂ surface exchange mechanism and where they are less important
- Identified composite cathode effect on O2 surface exchange with H2O
- Ambient humidity has a direct impact on LSM/YSZ cathode microstructural and compositional changes that degrades ohmic and non-ohmic ASR
- 1. "A Model for Extracting Fundamental Kinetic Rates of SOFC Cathode Materials from Oxygen Isotope Exchange Experiments," ECS Transacions, 9 (May 2014).
- 2. "Three Dimensional Microstructural Characterization of Cathode Degradation in SOFCs Using Focused Ion Beam and SEM," ECS Transactions, 9 (May 2014).
- 3. "Towards a Fundamental Understanding of the Cathode Degradation Mechanisms," ECS Transactions, 9 (May 2014).
- 4. "A Study of SOFC Cathode Degradation in H₂O Environments," *ECS Transactions*, **10** (Oct 2014).
- 5. "Enhancement of La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃₋₅ Activity by Ion Implantation for Low-Temperature SOFC Cathodes," J. of Electrochem. Soci., 162, 9, F965-970, (2015).
- 6. "Three Dimensional Microstructural Characterization of Cathode Degradation in SOFCs Using FIB/SEM and TEM," Microscopy and Microanalysis \$3, 2161 (Aug 2015).
- 7. "Investigating the Relationship Between Operating Conditions and SOFC Cathode Degradation," ECS Transactions, (2015).
- 8. "Fundamental Impact of Humidity on SOFC Cathode ORR", J. of Electrochem. Soc., 163 (3), F171-F182, (2016).
- 9. "Investigation of Long-Term Cr Poisoning Effect on LSCF-GDC composite cathodes", accepted, J. of Electrochem. Soc,
- 10. "Comprehensive Quantification of Porous LSCF Cathode Microstructure and Electrochemical Impedance", submitted J. of Electrochem. Soc.
- 11. "Reaction Kinetics of Gas-Solid Exchange Using Gas Phase Isotopic Oxygen Exchange", submitted ACS Catalysis.
- 12. "CO2 O2 Co-Exchange on Multivalent Metal Oxides", submitted The Journal of Physical Chemistry.
- 13. "Water and CO₂ gas-solid Exchange on Multivalent Metal Oxides and Their Composites", in preparation.
- 14. "Direct Observation of Oxygen Dissociation on Metal Oxides", in preparation.
- 15. "Concurrent Heterogeneous Reactions on Perovskites Using Gas Phase Isotopic Oxygen Exchange", in preparation.
- 16. "Reaction Kinetics and CO₂-O₂ Co-Exchange on Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-x}", in preparation.
- 17. "Chromium Poisoning Effects on Surface Exchange Kinetics of La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ}", in preparation.
- 18. "Effect of Gas Contaminants on LSCF-GDC Composite Cathodes", in preparation
- 19. "Mechanisms Governing Water Exchange on LSM and Composite LSM-YSZ Cathodes", in preparation.
- 20. "Oxygen Reduction Kinetics on LSM and LSM-YSZ Composite", in preparation.

but all done under absence of applied bias with no charge transfer...

In-Operando Project Objectives

Phase 1

- Develop *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties, under operating conditions of applied voltage / current.
- Determine surface exchange mechanisms and coefficients using *in-operando* ¹⁸Oisotope exchange of LSM and LSCF powders, and their composites with YSZ and GDC.

Phase 2

- Determine effect of microstructure, macrostructure and composition on the cathode performance, O₂ surface exchange mechanism and coefficient.
- Integrate results and identify cathode composition/structures and operational conditions to reduce ASR and enhance durability.
- Develop unifying theory for the numerous surface exchange processes obtained by ECR, IIE, IEDP, etc.
- Apply the model results on existing surface exchange coefficient data, and identify cathode compositions and structures with enhanced activity and durability.
 MARYLAND

Energy Research Center

Develop In-Operando Isotope Exchange System

Develop In-Operando Isotope Exchange System

in-operando Isotope Exchange Reactor

• Convert *in-situ* heterogeneous catalysis set-up to *in-operando* reactor to measure cathode ORR under applied bias

Develop In-Operando Isotope Exchange System

 Now able to *in-operando* determine cathode ORR by simultaneous cell current-voltage behavior under applied bias with *in-situ* heterogeneous ¹⁸O-isotope exchange

MARYLAND Energy Research Center

In-Operando Determination of LSCF kex as Function of Potential

• *In-operando* determination of LSCF surface exchange coefficient *k_{ex}* as a function of cathodic bias

In-Operando Determination of LSCF kex as Function of Potential

In-Operando Determination of kex as Function of Potential

Tentative Model

$$O_{2(gas)} \Leftrightarrow 2O + 4e^{-} \Leftrightarrow 2O^{2-}$$

• Under no polarization, the fitting of accumulation profiles to obtain exchange rate (R^*_{ex}) :

$$\frac{M(t)}{M_{\infty}} = 1 - \exp\left(-R_{ex}^{*}t\right) \blacktriangleleft$$

• The 3D exchange rate coefficient, k_{ex} , under polarization (*D* – particle diameter):

$$k_{ex} = \frac{D}{6} \left(R_{ex}^* - \frac{I}{2FN} \right)$$

Gil Cohn, Eric D.Wachsman et al. Journal of The Electrochemical Society, **163** (2016)

• Implementing the Tafel relation between I and η :

$$I = I_0 \exp(C\eta); \ C = \frac{\alpha ZF}{RT}$$

$$k_{ex} = \frac{D}{6} \left(R_{ex}^* - \frac{I_0 \exp(C\eta)}{2FN} \right)$$

In-Operando Determination of kex as Function of Potential

In-Operando Determination of kex as Function of Potential

Summary/Conclusions

- Developed an *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties under operating conditions of applied voltage / current
- For the first time determined the oxygen surface exchange coefficient (*k_{ex}*) *in-operando* as a function of applied electric potential with *in-situ* ¹⁸O-isotope exchange
- Developed direct relationship between electrochemical (I-V) performance and k_{ex} as well as unifying theory to relate isotope exchange obtained k_{ex} to other electroanalytic (e.g., ECR) techniques

Future Work

• Determine in-operando k_{ex} for varying A/B site ratios in LSM and LSCF and their composites with YSZ and GDC and determine how changes under degradation

If Phase 2 Awarded

- Develop and validate *in-operando* button cell apparatus
- Extend to effect of microstructure, macrostructure and composition on cathode performance, O_2 surface exchange mechanism and coefficient.
- Integrate results and identify cathode composition/ structures and operational conditions to reduce ASR and enhance durability.
- Apply the model results on literature k_{ex} data, to identify cathode compositions and structures with enhanced activity and durability.

Fig. 9. In-operando cell testing system (ICTS) consisting of custom cell, flow system, furnace, potentiostat and mass

Fig. 10. Example of ICTS results, measured $^{18}O_2$ concentration as a function of transient cell voltage during galvanostatic impedance measurements, demonstrating ability to measure rapid gas concentration changes with EIS voltage sweep at static applied current steps.

