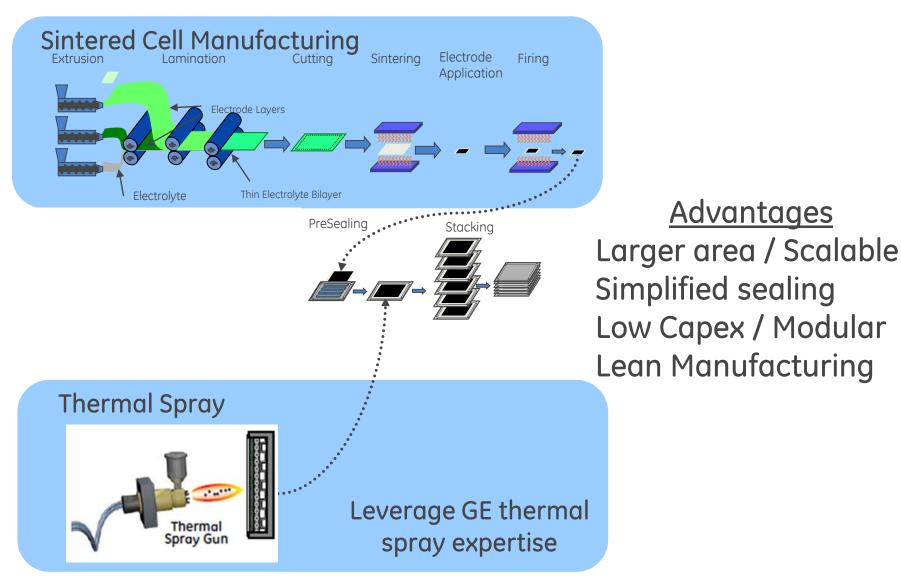

Development of a Thermal Spray, Redox Stable, Ceramic Anode for Metal Supported SOFC

Richard Hart GE Global Research Pitt Review July 20, 2016

Imagination at work.


SOFC Innovative Concepts and Core Technology Research DE-FOA-0001229 Award FE0026169 *_{Trademark of General Electric Company}

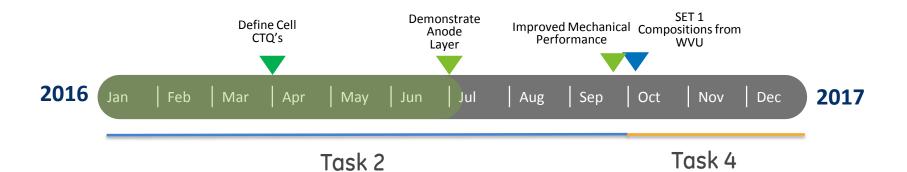
Metal supported SOFC cells

Low-cost manufacturing

<u>Advantages</u>

Fuel Cell Pilot Facility – Malta NY

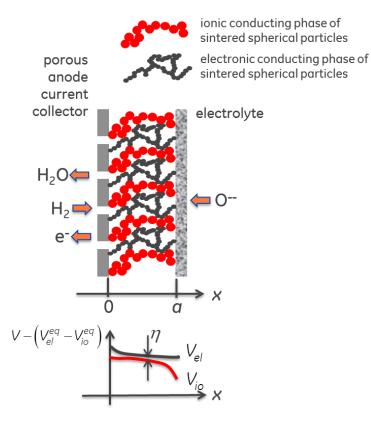
Traditional NiO(Ni)/YSZ anodes


- Advantages:
 - High initial electrochemical activity
 - Good electronic conductivity
 - Low cost
 - Well understood, wealth of data

- Disadvantages:
 - High redox Vol change (fuel \leftrightarrow air)
 - Ni particle ripening/poisoning
 - EHS concerns (NiO)
 - Sourcing concerns (REACH in Eu)

Project Plan & Deliverables (~\$3.5M, 3 year, 25% cost share)

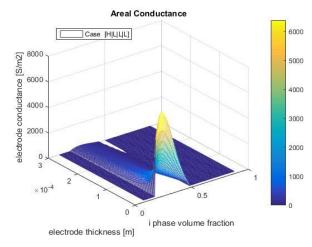
Task	Owner	Timing	Objectives
1	GE Global Research	Months 1-36	 Defined by DOE; risk management, coordination, reporting
2	GE Global Research GE-Fuel Cells	Months 1-12	 Derive anode layer requirements from existing systems models Tailor Global Research thermal spray process using single baseline composition Streamline (cost and lead time) powder engineering methods Establish redox cycle cell test procedures
3	West Virginia University	Months 1-24	 Develop key materials properties measurements Hand off to GRC SET1 and SET2 Anode Compositions
4	GE Global Research	Months 13-27	 Optimize thermal spray process for improved formulations Go/No – Does single scaled cell (100-400cm²) meet CTQs?
5	GE Global Research GE-Fuel Cells	Months 28-36	 Powder scale up, cell fabrication scale up. Build and test, 5 kW SOFC stack for 1000 hr, Nat Gas/Sim Nat Gas fuel.


Define cell specifications for Go/No Go decision point (27months)	[March 31]
Demonstrate a working all ceramic anode layer (OCV on a cell)	[June 31]
Demonstrate improvement mechanical perf. (no failure @ 1 cycle)	[Sept 30]
Deliver SET 1 compositions (WVU-> GE)	[Oct 1]

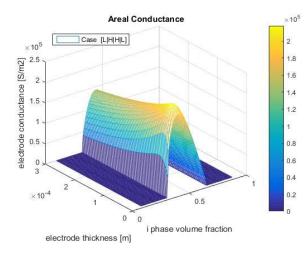
6

Electrochemical Model

Electrochemical Model

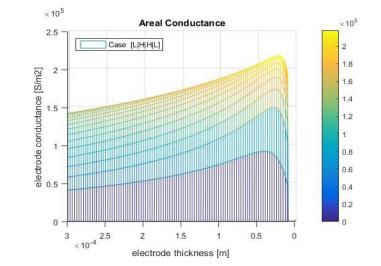


For our system: Red = $Gd_{0.2}Ce_{0.8}O_{1.9}$ Black = $La_{0.35}Sr_{0.65}TiO_3$


- Adapted simple Literature Model (Costamagna)
- Initial programming complete (Matlab)
- Completed 6 factor DOE exploring: Electrode thickness
 Particle size & ratio of particle sizes
 Volume fraction of phases
 Effective electron conductivity
 Effective ion conductivity
- WVU performing screen printed electrode study for model validation/calibration (kinetics)

Electrochemical Model - Example DOE Results

Quadrant 3: P = 2 and $\sigma_{oel} = 20$ S/m



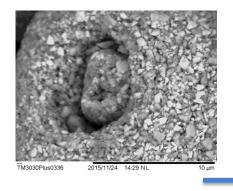
Quadrant 2: P = 1 and $\sigma_{0el} = 2000$ S/m

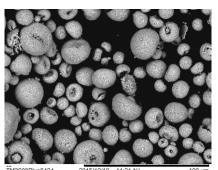
-Wide range of electrode area conductance (1/ASR)

-Model results match qualitative expectations

-Identified regions of performance near GE goals

-Exchange current density for reactions largely unknown for these systems. Goal of WVU study.


-Used model to aid material spec. definition



Cell Testing Results

Demonstrating Ceramic Anode Metal Supported Cells:

030Plus0424 2015/12/10 11:21 NL

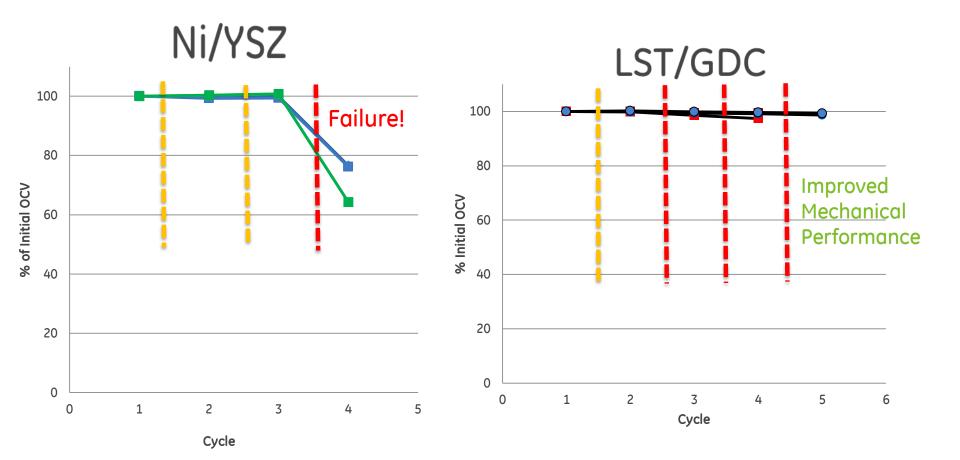
Sourced Engineered Powders

LST (La $_{0.35}$ Sr $_{0.65}$ TiO $_{3}$) GDC (Gd $_{0.2}$ Ce $_{0.8}$ O $_{\sim 1.9}$)

Coupon Screening Experiments

XRD, SEM, Permeability, DE, Roughness, etc...

100cm² Cells


(2 cell stacks)

OCV, W/cm2 Redox Stability

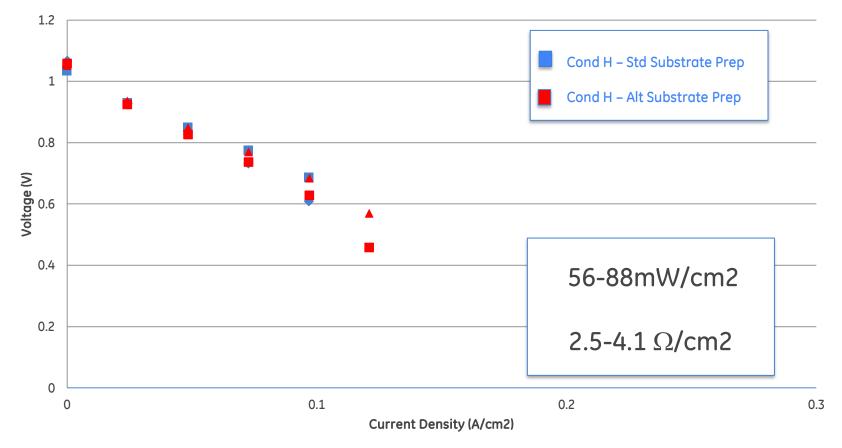
Hart, Rosenzweig, Thomas, Northey, Bancheri, Leblanc

Stack Redox Cycling – Ni/YSZ vs. Alt Anode Stacks

Orange = Standard Thermal Cycle w/ H2 Flow (we did two of these, to check cell health)

Red = Redox Thermal Cycle (no protective flow)

Ni/YSZ cells fail after a single redox cycle


Ceramic anode cells survive up to 5 cycles

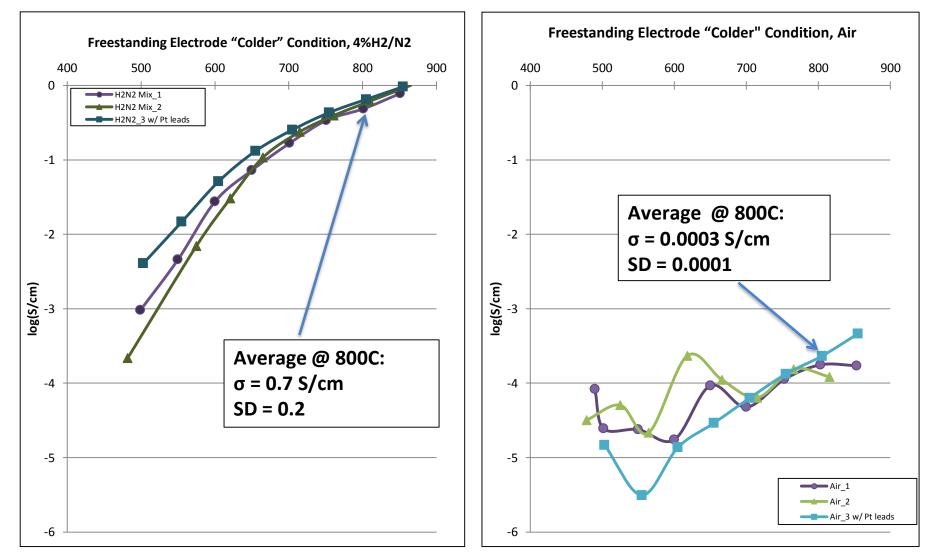
Confirmation of damage mechanism! (similar to mechanism previously reported for sintered Cells)

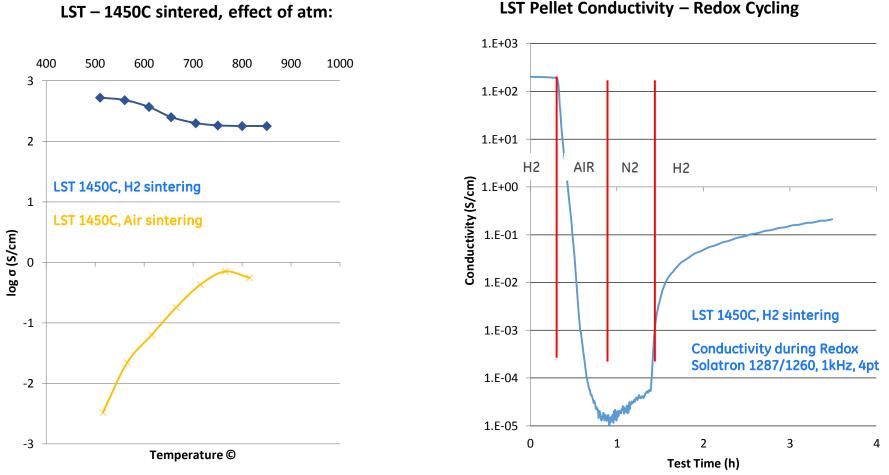
LST/GDC Anodes- Power curves (low Uf)

Demonstrated working ceramic anode cells (June 31 + Sept 30 Milestones) Next step: improve upon extreme low power density! (improve microstructure & test new formulations)

Material Conductivity Testing Results

Conductivity Test Setup (GE-GRC)




Jezek, Hart

Conductivity Results – Replicate Measurements Free Standing LST/GDC thermal spray films

LST Conductivity – Effect of Sintering Atm, and Redox:

LST – 1450C sintered, effect of atm:

Solatron 1287/1260, 4pt, AC impedance, ~1kHz

E-chem Model -> need to identify materials w/ >10-20S/cm after redox

17

WVU & GE Anode Material Development

Material Development Testing Plan

- **Conductivity Testing**
 - Screen w/ pressed pellets or free-standing films
 - Electron Conductivity > 20S/cm (~30x improvement)
 - Ion Conductivity > 1x10⁻² S/cm (~100x improvement)

Mechanical Stability During Redox Cycling (800C)

- Redox Vol. Change target still in progress (Mech E) < GDC soft target
- Measuring vol change w/ redox dilatometry (good baseline)

SOFC Cell Testing

- WVU using 1" button testing
- GRC using 100cm2 metal supported cells (2-6 cell stacks)

Formulation Development Plan:

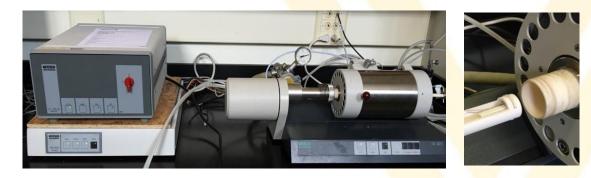
GE Global Research:

-Pivot: added on ceramic synthesis efforts
-GE Targeting lower risk/reward candidates
-Pivot: Testing GE lab scale spray dry (schedule risk abatement)

WVU:

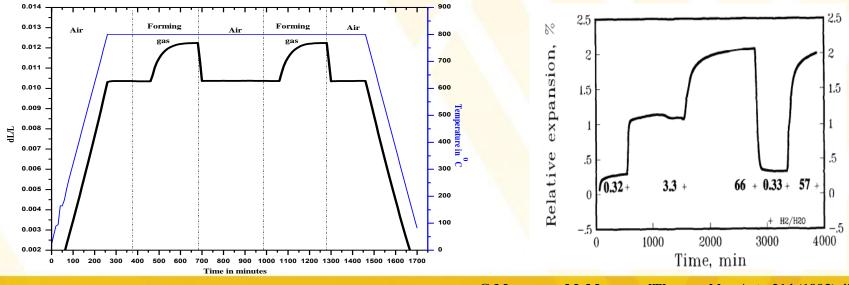
- -Starting from WVU's previous Anode Composition work
- -Developed Redox Dilatometry methods
- -Using 1" SOFC test bed: model validation & comp screening

Goal: thermal spray 1st new ceramic formulation by Oct 1

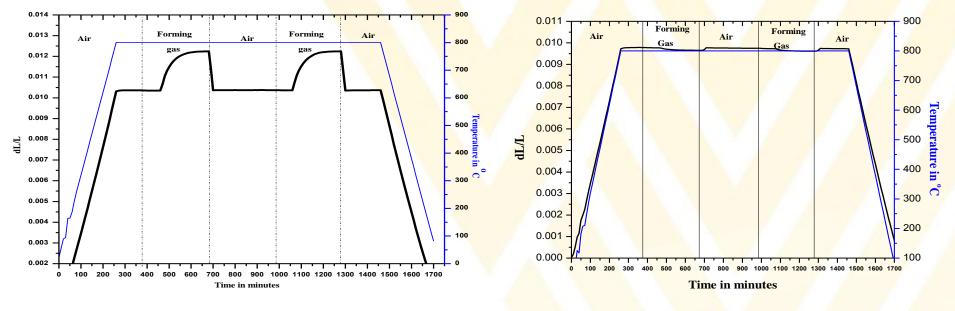


Lit Overview Alternative Ceramic Anodes

Structure	Performance Attributes	Examples	Research Level Required (RLR)
	Good/excellent e- or hole-		
Perovskite	conductor, low catalysis of HCs	lst, yst, lscm	Low
Layered- Perovskite	Good e- conductor (very slight ionic), some catalysis of HCs	Sr ₂ MgMoO _{6-x}	Low
Fluorite	Ionic conductor (very slight electronic), low/high catalysis	doped-CeO ₂	High
Pyrochlore	Low e- conductor, some catalysis of HCs, high redox stability	doped-Gd ₂ Ti ₂ O ₇	High
Ruddlesden- Popper	Low e- conductor, high redox stability (for Ti or Nb-oxides)	(Sr,La) ₃ (Mg,Nb) ₂ O ₇	High
Tungsten- Bronzes	Good/low e- conductor, redox stable, chemical stability issues	Sr _{0.2} Ba _{0.4} Ti _{0.2} Nb _{0.8} O ₃	High



Redox Dilatometry


NETZSCH dilatometry setup in WVU for thermomechanical analysis

- Change in protocol was necessary (longer dwell times)
- Redox behavior for GDC now matches lit data shapes:

CTE in Air between 25-800°C is ~13.23x10⁻⁶ ~0.2% volume changes due to redox G Mogensen, M. MogensenlThermochlm Acta 214 (1993) 47-50

Redox Dilatometry (LST and GDC)

GDC (GRC Supplied)

CTE in Air between 25-800°C is ~13.23x10⁻⁶ ~0.2% volume changes due to redox

LST (GRC Supplied)

CTE in Air between 25-800°C is 12.51x10⁻⁶ ~0.02% volume changes due to redox?

Summary

- Demonstrated working ceramic anode cells Improved mechanical performance vs. NiO/YSZ anodes Very low power density (formulation + microstructure)
- Redox conductivity tests identified insufficient materials properties for baseline composition (LST)
 Short term microstructure optimization delayed temporarily
- Formulation development in progress and additional resources at GE added to help accelerate

GE Team:

Rich Hart

Larry Rosenzweig, Bastiann Korevaar, Paul Thomas

Stephen Bancheri, Susan Corah

Erik Jezek, Becky Northey

Dayna Kinsey, Luc Leblanc, Matt Alinger Todd Striker, Andy Shapiro

Mike Vallance

Jae Hyuk Her, Erik Telfeyan, Matt Ravalli

Johanna Wellington, Steve Duclos, Katharine Dovidenko, Vanita Mani

Thermal Spray GRC

Powder development

Materials testing, microstructure & degradation

GE Fuel Cells, scale up Thermal Spray Systems Support

Echem Model

Analytical Support

GE Management Support

WVU Team

Principle Investigators: Dr. Xingbo Liu^a Dr. Edward M. Sabolsky^a Dr. John Zondlo^b

Research Assistants: Dr. Tony Thomas^a Laura (He Qi)^a

^aDepartment of Mechanical and Aerospace Engineering ^bDepartment of Chemical Engineering West Virginia University

Acknowledgements

- GE Fuel Cells SOFC Team
- GE Global Research Team
- WVU (Dr. Sabolsky, Dr. Liu, Dr. Zondlo, & team)
- Steven Markovich @ DOE/NETL
- Funding provided by the US Department of Energy through cooperative agreement FE0026169

This material is based upon work supported by the Department of Energy under Award Number FE0026169. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.

