

Driving Innovation • Delivering Results

Systems Analysis of Fuel Cell Plant Configurations with Vent Gas Recirculation (VGR)

Gregory A. Hackett, Ph.D.

Systems Engineering and Analysis 17TH Annual SOFC Project Review Meeting July 19, 2016

Outline

- Motivation
- Application of VGR Concept to IGFC and NGFC Utility Scale Systems
 - Methodology
 - Results
- Application of VGR Concept to DG-SOFC Systems
 - Methodology
 - Results
- Conclusions
- Acknowledgments/Contact Information

Motivation

- Solid oxide fuel cell (SOFC) based systems are capable of achieving efficiencies of over 60 percent
 - Based on electrochemical fuel utilization (FU) of 90 percent
 - State-of-the-art SOFC typically operate at FU of less than 80 percent to prevent performance issues such as:
 - Fuel flow mal-distributions
 - Elevated performance degradation rates
 - Increased overpotentials
 - Simply recirculating the anode vent gas dilutes the fuel
 - Lowers electrochemical potential

NETL, Techno-Economic Analysis of Natural Gas Fuel Cell Plant Configurations, April 2015, DOE/NETL-2015/04082015 NETL, Techno-Economic Analysis of Integrated Gasification Fuel Cell Systems, November 2014, DOE/NETL-341/112613

Motivation

Proposed Solution

Modified Fuel Cell System with Vent Gas Recirculation

- Investigation of SOFC systems that feature recirculation of the residual fuel in the vent gas after CO₂ capture/dehydration
- Concept Advantages:
 - <u>Allows system efficiency of GREATER THAN</u> 70 percent (HHV)
 - Permits nearly 100 percent fuel utilization
 - Improves performance due to increased inlet and average chemical (Nernst) potential
 - Lowers single-pass stack fuel utilization
 - Enables reliable operation at high-system fuel utilization
 - Mitigates fuel mal-distribution concerns
 - Reduces airflow requirements
 - Eliminates the need for an oxy-combustor

Utility Scale IGFC and NGFC with Vent Gas Recirculation Concept

Utility Scale NGFC/IGFC Methodology

- Applied to utility scale (≈550 MWe) SOFC systems for analysis:
 - Natural Gas Fuel Cell (NGFC) system
 - Integrated Gasification Fuel Cell (IGFC) system
- A spreadsheet model was developed to discern general advantages of the proposed system:
 - Recirculation rate, fuel utilization, capture rate, etc.
 - Used to guide Aspen cases

• Aspen model modifications:

- CO level in CO₂ product designed to be less than 35 ppm (per NETL QGESS)
 - Cryogenic CO₂ purification used (auto-refrigeration)
 - WGS reactor or preferential oxidation (PROX) reactor used
- Pure CO_2 and H_2O separations are assumed

NETL, QGESS, CO_2 Impurity Design Parameters, August 2013, DOE/NETL-341/011212

Utility Scale NGFC/IGFC Methodology

Baseline Case Parameters

Parameter	IGFC	NGFC
Natural Gas Reformation	N/A	100% Internal
Gasifier	Conventional	N/A
Operating Pressure [atm]	1.0	1.0
Overall FU [%]	90	90
Cell Overpotential [mV]	70	70
Degradation Rate [%/1000 h]	0.2	0.2
Current Density [mA/cm ²]	400	400
Inverter Efficiency [%]	97	98
Stack Cost [\$/kW]	225	225
Plant HHV Efficiency [%]	42.6	64.7
Plant COE [\$/MWh] (excludes T&S)	104.5	68.8

Utility Scale Generalized Configuration

Utility Scale NGFC/IGFC Configurations

- Baseline Case
 - No VGR
 - No water gas shift (WGS) reactor
- Configuration A
 - No VGR
 - WGS reactor
- Configuration B
 - VGR
 - No WGS reactor
 - Preferential oxidation reactor (PROX)

Configuration C

- VGR
- No WGS reactor
- No PROX reactor

Configuration D (IGFC only)

- VGR
- WGS reactor
- PROX reactor

Results – IGFC Spreadsheet Model

Ø

Results – NGFC Spreadsheet Model

ENERGY National Energy Technology Laboratory

Ø

Results Summary (NGFC/IGFC)

NGFC System*	VGR Fraction	In-stack FU [%]	System FU [%]	WGS CO Conv. [%]	PROX Use	System Eff. [% HHV]	COE* [\$/MWh]
Baseline Case	0	78.6	90.0	0	No	64.7	68.8
Configuration A	0	78.6	90.0	96.5	Νο	65.7	65.8
Configuration B	0.94	43.3	97.5	0	Yes	71.2	62.3
Configuration C	0.94	58.8	97.5	0	No	71.3	61.3
IGFC System							
Baseline Case	0	75.1	90.0	0	No	42.6	104.5
Configuration A	0	76.3	90.0	70.0	Νο	44.6	99.5
Configuration B	0.92	46.2	97.5	0	Yes	48.6	94.2
Configuration C	0.94	47.5	97.5	0	No	49.3	93.7
Configuration D	0.94	65.2	97.5	30.0	Yes	48.1	93.0

* - Reported cost of electricity does not include transport and storage costs, NG price for NGFC cases = \$6.13/MMBTU

Potential Impacts on SOFC Operation

- Applying the concept to an NGFC system with complete internal reformation eliminates the need for an air separation unit (ASU)
- The modified SOFC system with the baseline 140 mV overpotential assumption results in nearly the same efficiency as the un-modified system that assumes advanced performance of 70 mV overpotential
 - The modified system enables the SOFC pathways even if the advanced SOFC performance goal cannot be met
 - Conversely, if the performance goals are met, the system can be used to lower the capital cost [\$/kW] of the overall system by operating at a higher current density (consequently at a higher power output) corresponding to the 140 mV overpotential

Distributed Generation Scale NGFC with VGR Concept

Distributed Generation SOFC System VGR Evaluation

- The previously discussed investigations were applied to utility scale (≈550 MWe) IGFC and NGFC systems
 - Need to explore the advantages of the system with VGR on a distributed generation (DG) SOFC system scale of ≈1 MWe

Methodology

- A baseline natural gas based DG-SOFC system was developed is Aspen based on an earlier developed ChemCAD model
 - DG NGFC system with complete internal reforming baseline case
- The baseline system will be extended to include the VGR concept
 - Systems with and without CO₂ capture have been explored
- A cryogenic CO_2 separation system and purification system similar to the utility scale system will be used initially

DG-SOFC System Methodology

Baseline Case Parameters

Parameter	IGFC	NGFC	DG
Natural Gas Reformation	N/A	100% Internal	100% Internal
Gasifier	Conventional	N/A	N/A
Operating Pressure [atm]	1.0	1.0	1.0
Overall FU [%]	90	90	90
Cell Overpotential [mV]	70	70	70
Degradation Rate [%/1000 h]	0.2	0.2	0.2
Current Density [mA/cm ²]	400	400	400
Inverter Efficiency [%]	97	98	98
Stack Cost [\$/kW]	225	225	225
Plant HHV Efficiency [%]	42.6	64.7	61.0
Plant COE [\$/MWh] (excludes T&S)	104.5	68.8	74.9

DG-SOFC System Baseline Configuration

DG-SOFC System Configuration w/ VGR

DG-SOFC System Configurations

- Baseline Case:
 - DG-SOFC system without carbon capture/storage (CCS)
- Configuration A:
 - DG-SOFC system without CCS, but with VGR
 - Dehydration of flue gas only
- Configuration B:
 - DG-SOFC system with CCS, but without VGR
- Configuration C:
 - DG-SOFC system with CCS and VGR

Results Summary (DG-SOFC)

DG-SOFC System Case	VGR Fraction	CO ₂ Capture Rate [%]	In-stack FU [%]	System FU [%]	System Eff. [% HHV]	COE [\$/MWh]	Selling Price CO ₂ * [\$/tonne]
Baseline Case No VGR, No CCS	0	0	79	90	61.0	74.9	N/A
Configuration A No VGR, CCS	0	98.0	79	90	57.9	95.2	65.8
Configuration B VGR, No CCS	88	0	61	97.5	62.3	74.1	N/A
<u>Configuration C</u> VGR, CCS	94	93.4	43	97.5	67.5	79.3	17.3

- Concept results in lower COE when compared to a DG-SOFC system with CCS
- Efficiency gains and cost reductions are minimal without CCS (dehydration only)

* - To break even with VGR, no CCS Case

Conclusions (Utility Scale NGFC/IGFC)

- The performance and cost of IGFC, NGFC, and DG-SOFC system that incorporated the VGR concepts were investigated
- A spreadsheet model of the process material flow was developed
 - Modified fuel cell system has a potential to increase the IGFC and NGFC system efficiencies by up to 30%
- Incorporation of the VGR concept into IGFC and NGFC cases with CCS demonstrated:
 - An efficiency gain of more than 6 percentage points
 - Greater than 70 percent in NGFC case
 - A reduction in COE of nearly 10 percent
 - A high electrochemical fuel utilization of 97.5 percent yet ensuring a reliable fuel cell stack operation with local utilizations potentially below 50 percent

Conclusions – DG-SOFC System

- DG-SOFC system with VGR and CCS was found to result in a significantly higher performance and lower cost than a <u>DG-</u> <u>SOFC system with CCS</u> but without VGR
 - An efficiency gain of nearly 10 percentage points
 - ≈17 percent reduction in COE (@NG price of \$6.13MM/Btu)
- The system performance of the DG-SOFC system with VGR and CCS was even higher than a DG-SOFC system without CCS
 - An efficiency gain of nearly 6 percentage points
 - The system operates at higher voltage and lower in-stack utilization

Conclusions – DG-SOFC System (2)

- The COE of the system with VGR and CCS was ≈\$5/MWh higher than a DG-SOFC system without CCS
 - Alternate CCS technology with lower cost and auxiliary load demand than a cryogenic CPU can result in a COE comparable to the COE of the system without CCS
 - Potential applications that can use the captured CO₂ can be used to offset the COE difference
 - The COE differences between the system with VGR and CCS and the system without CCS become smaller as the NG price increases
 - The higher stack fuel flow has a potentially beneficial effect by spreading out the cooling effect of the internal reformation
- Operation of the system with VGR at higher current densities can potentially decrease the capital costs
 - Operation at the same voltage as that of system with CCS nearly doubles the operating current

Acknowledgments

<u>NETL</u>

- Kristin Gerdes
- Shailesh Vora
- Travis Shultz
- Joe Stoffa

Contact Information

Gregory A. Hackett

Systems Engineering and Analysis

Research & Innovation Center

NETL

ESPA/MESA

- Arun K.S. Iyengar
- Richard Newby
- Dale Keairns
- Mark Woods

Gregory.Hackett@netl.doe.gov

NETL SOFC Group Posters

- "Phase Field Modeling of Microstructure and Conductivity Evolution in SOFC Electrodes" – Youhai Wen
- "Effects of Humidity on Degradation of Sr-Fe-O Infiltrated Solid Oxide Fuel Cells" – Lynn Fan
- "Catalyst Infiltration of SOFC Electrodes Assisted by a Bio-surfactant" Ozcan Ozmen
- "Characterization of SOFC Cathode Impedance under Polarization Using Appropriate Counter Electrode Design" – Jay Liu
- "Interpretation of Impedance Spectroscopy Data on Porous LSM Electrodes" Giuseppe Brunello
- "Representative Volumes in Highly Heterogeneous Fuel Cell Materials" Billy Epting
- "Ab Initio Modeling of Mn Self-Diffusion in La_{1-x}Sr_xMnO₃ (X=0 and 0.25) for Solid Oxide Electrochemical Cells" – Yueh-Lin Lee
- "Evidence of the Space Charge Layer Evolution at the YSZ Grain Boundaries" Xueyan Song

Backup Slides

CONTRACTOR OF National Energy
Technology Laboratory

IGFC Pathway Results

NETL, Techno-Economic Analysis of Integrated Gasification Fuel Cell Systems, November 2014, DOE/NETL-341/112613

80

CF (%)

NGFC Pathway Results

NETL, Techno-Economic Analysis of Natural Gas Fuel Cell Plant Configurations, April 2015, DOE/NETL-2015/04082015

97

225

80

Inverter Effy. (%)

Stack Cost (\$/kW)

CF (%)

Power Generation Technology Comparison *Performance*

Power Generation Technology Comparison Cost of Electricity

LISE DEPARTMENT OF ENERGY National Energy Technology Laboratory