

Advances in SOFC Power System Development

Hossein Ghezel-Ayagh 17th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting Pittsburgh, PA July 19-21, 2016 Ultra-Clean | Efficient | Reliable Power

Presentation Outline

Introduction

- FCE Organization
- SOFC Technology Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- System Development
 - 50 kW Proof-of-Concept Module (PCM) System
 - 200 kW System Development
- Innovative Concepts
- Summary

FuelCell Energy's SOFC Development Facilities

Materials Laboratory and Bench Scale Fabrication

Facilities for up to 400 kW Stack Tests

Outdoor Pads for 400 kW Grid Connected System Tests

Calgary Facilities

SOFC Materials & Components R&D

Cell & Stack Pilot Manufacturing & QC

33 Test Stations: Single Cell to 25 kW Stack Testing

Project Objectives

Development of SOFC technology suitable for ultra-efficient central power generation systems (coal and natural gas fuels) featuring >90% carbon dioxide capture

Conduct cell & stack R&D focusing on performance, reliability, cost and manufacturing enhancements

Fabricate and test fuel cells & stacks including endurance testing (≥1000 hours) under system-relevant operating conditions

Design, build and operate 50-200 kW demonstration systems using natural gas fuel to validate stack operation in system environment

Develop concept system design and stack module for a MW-class power plant

Presentation Outline

Introduction

- FCE Organization
- SOFC Technology Overview

Progress in SOFC Technology

- Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- System Development
 - 50 kW Proof-of-Concept Module (PCM) System
 - 200 kW System Development
- Innovative Concepts
- Summary

Cell Technology Overview

Component	Materials	Thickness	Porosity	Process
Anode	Ni/YSZ	0.3 - 0.6 mm	~ 40%	Tape casting
Electrolyte	YSZ	5 - 10 μm	< 5%	Screen printing
Cathode	Conducting ceramic	10 - 50 μm	~ 30%	Screen printing

Cell Development Path

"TSC" Manufacturing Process

Anode Development

- Reduce Cell Thickness
- Enhance Performance at Higher Fuel Utilization
- Improve Performance at Lower Temperature
- Enhance Cell Mechanical Properties and Robustness

Cathode Development

- Enhance Performance and Endurance
- Lower Operating Temperature
- Increase Operating Window

Scale Up & Manufacturing Development

- 121 cm² →1000 cm²
- Established Cell Baseline at 550 cm²
- > 8000 Cells (25 x 25 cm²) Fabricated
- Production Volume of 500 kW (annual) & >95% Fabrication Yield Demonstrated

TSC3 Long-term Performance

Long-term cell endurance was verified in >2 years of operation with a 0.32%/1000h performance degradation

Cr Tolerant Technology

Cobalt Coated Interconnect

Gen 2.0 Cr Getter Development

In-house MCO Coating

- Issues with ex-situ MCO coating
 - High-temperature reducing atmosphere densification process leads to high cost and oxides forming at anode side IC
- In-house MCO coating focused on simpler densification process
 - Eliminate the need for >900°C densification in reducing environment
- Arrived at coating approaches which demonstrated superior performance in accelerated Cr tolerance single cell tests
- One approach was tested for over 10,000 hours in high humidity cathode air (10% H₂O)

MCO Ex-Situ Coated Interconnect

Effect of Anode Thickness and Density on Fuel Utilization

Recent Thin Cell Performance

Test of Thin Cells up to 95% Fuel Utilization

Steady-State Test of Thin Cell

Improved Stack Metallics Fabrication Quality

High Quality Built Stack & Stack Modules Advanced QC Station for Ensuring the Quality of Stack Metallic Components 17

Improved Cell Fabrication Quality Control

New High-Throughput & Multi-Functional QC Stations Ensure Quality Cell Components Increased Stabilized Cell Production Yields via Tools & Corrective Action

- Increased Production Quality
- Reduced Inspection Labor Time
- Increased Stack Operational Reliability

Automated Cell Printing

- Off-the-shelf equipment from electronics industry
- Automatic cell handling and alignment
- Reduced labor and improved quality

Presentation Outline

Introduction

- FCE Organization
- SOFC Technology Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing

Stack Development

- Scale-up and Test Results
- System Development
 - 50 kW Proof-of-Concept Module (PCM) System
 - 200 kW System Development
- Innovative Concepts
- Summary

Stack Development Path

6-cell short stack

16-cell short stack

Performance Improvement

Higher power density

Scale Up

- Scaled up cell active area from 121 to 550 cm²
- Scaled up from 28 cells up to 120 cells
- Stack power from
 1 kW to 16 kW

Higher fuel utilization Higher direct internal reforming

Cost Reduction

 Simplified stack design/part reduction

Endurance Enhancement

- Improved stack thermal and flow management
- Incorporated new cell materials
- Incorporated advanced flow media

Baseline Stack Building Block

Operating Conditions				
Fuel Utilization	68%			
Air Utilization	15 – 40%			
In-Stack Reforming	25 – 70%			
Stack Current	160 A (291 mA/cm²)			
Gross DC Electrical Power	~16 kW			

Number of Cells 120

Tall Stack with Improved Reliability & Gen 1.0 Cr Tolerant Cell

GT058139-0002

Cr Tolerant Technology Gen 2.0 Cr Getter Improvement

Introduction

- FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results

System Development

- 50 kW Proof-of-Concept Module (PCM) System
- 200 kW System Development
- Innovative Concepts
- Summary

50kW Proof-of-Concept (POC) System Fabrication and Installation

Balance-of-Plant Fabrication

Module Fabrication

Installation

Module/BoP/Façade Integration

50 kW System Performance Testing

Stack Currents	137.5 A
Average Cell Voltage	851 mV
Average Stack Voltage	102.1 V
Total Hot Run Time	>2500 hrs

50 kW System Control System Screen Shot

Uniform voltage distribution from all four stacks were measured

50 kW System Performance Summary

	Design	Actual
DC Power (gross)	55.1 kW	56.2 kW
Natural Gas Fuel Flow	4.9 scfm	5.03 scfm
Fuel Energy (LHV)	80.8 kW	82.7 kW
Water Consumption	0	0
Gross Module DC Efficiency (LHV)	68.2%	67.9%
Total on Load Time	1500 hrs	>1500 hrs
Overall Stack Performance Degradation	<1% per 1000 hrs	<1% per 1000 hrs

200 kW SOFC System

	200 kW SOFC System Performance Summary					
	SOFC Gross Power	Normal Operating Conditions		Rated Power		
	DC Power	225.0	kW	244.0	kW	
	Energy & Water Input					li
	Natural Gas Fuel Flow	19.7	scfm	21.6	scfm	1
Air	Fuel Energy (LHV)	323.2	kW	355.5	kW	1
V	Water Consumption @ Full Power	0	gpm	0	gpm	
Moderate ter	Consumed Power					
to reduce cc	AC Power Consumption	10.8	kW	12.5	kW	▲ 1
while increa:	Inverter Loss	11.3	kW	12.2	kW	
	Total Parasitic Power Consumption	22.0	kW	24.7	kW	
	Net Generation & Waste Heat Availability					
	SOFC Plant Net AC Output	203.0	kW	219.3	kW	mer
Fuel Gas	Available Heat for CHP (to 48.9°C)	84.7	kW	90.8	kW	l l
	Exhaust Temperature - nominal	370	°C	370	°C	
Startup Water	Efficiency					
	Electrical Efficiency (LHV)	62.8	%	61.7	%	ocess Loop
	Total CHP Efficiency (LHV) to 48.9°C	89.0	%	87.2	%	Process Loop

→ 200 kW Modular Power Block (MPB) system is designed to validate stack reliability and serve as FCE's market-entry SOFC product.

100kW SOFC Modular Power Block (MPB)

100 kW SOFC Module Includes 8 Baseline Stacks Arranged in 4 Towers of Two Stacks Each

200kW SOFC Power System Layout

- Includes (2) 100kW SOFC Module Power Blocks (MPB) designed to operate independently
- Factory assembled & shipped as a standard ISO 20' x 8' ontainer

400kW SOFC System Project

- The 400 kW SOFC system consists of two 200 kW SOFC power plants
- Each 200 kW skid is sized as standard ISO 20' x 8' shipping container
- Thermally integrated modules enable compact and lower cost system
- Unattended Operation with Remote Monitoring
- >60% Electrical Efficiency
- >5000 hours of operation
- Heat recovery capability for up to 80% total thermal efficiency

Presentation Outline

Introduction

- FCE Organization
- SOFC Technology Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- System Development
 - 50 kW Proof-of-Concept Module (PCM) System
 - 200 kW System Development
- Innovative Concepts
- Summary

Innovative SOFC Concepts

Current Pre-Commercial Integrated Manifold (PCI) Stack

Compact SOFC Architecture (CSA) Stack with ~10-fold Increase in W/kg Power Density

Objective

Develop an innovative stack design enabling significant reduction in stack cost relative to baseline stack design (PCI)

Approach

- Thinned components to reduce stack material content
- Use of same cell, interconnect and coating materials validated in the PCI platform
- Increased cell count per stack and simplified end plates
- Designed for automated assembly
- Simplified and fewer discrete components
- Optimized thermal and flow design to control temperature variations

Comparison of 100 kW Stack Module Based on Current PCI Stack Design (Left) and CSA Stack Design (Right)

Progress to Date on Key Technical Issues

225-cell CSA Style Stack – Fabrication and Test

High Power Density Cell Polarization Comparison

Current Density, A/cm²

Research Advances towards Low Cost, High Efficiency PEM Electrolysis. K.E. Ayers, E. B. Anderson, C. B. Capuano, B. D. Carter, L. T. Dalton, G. Hanlon, J. Manco and M. Niedzwiecki. 1, 3-15, s.l. : ECS Trans., 2010, Vol. 33.

Electrolysis Stack Endurance

Presentation Outline

Introduction

- FCE Organization
- SOFC Technology Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- System Development
 - 50 kW Proof-of-Concept Module (PCM) System
 - 200 kW System Development
- Innovative Concepts
- Summary

Achievements

- Developed new Gen 2.0 Cr-mitigation strategies (interconnect coatings and Crtolerant materials) and validated the optimized materials sets in single-cell tests with 10% H₂O concentration in cathode air
- Achieved fabrication of thin cells (~ 300 micron) with excellent performance and endurance, capable of operating at high fuel utilizations (>95%)
- Improved cell / stack manufacturing and enhanced Quality Control procedures to increase stack reliability and endurance. A 64-cell large area stack is validated at system operating conditions in test stand for about 2 years
- Completed fabrication and testing of a highly integrated 50kW Proof-of-Concept (POC) system for testing of 4 large-area full height stacks in system environment
- Completed the design of a 200 kW SOFC system for demonstration testing of the next generation SOFC stack towers

The progress in SOFC technology was supported by DOE/NETL Cooperative Agreements: DE-FE0011691, DE-FE0023186, DE-FE0026199, and DE-FE0026093

Guidance from NETL Management team: Shailesh Vora, Joseph Stoffa, Patcharin Burke, and Heather Quedenfeld

