Prevention and Remediation of Sustained Casing Pressure and other Isolation Breaches
RPSEA Number 11122-42

Kyle Combs
CSI Technologies

U.S. Department of Energy
National Energy Technology Laboratory
Mastering the Subsurface Through Technology, Innovation and Collaboration:
Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 16-18, 2016
Presentation Outline

• Introduction/Project Description
• Project Overview
• Technical Status
 – Prevention of SCP
 – Remediation of SCP
• Accomplishments to Date
• Summary
 – Key Findings
 – Lessons Learned
 – Future Plans
Benefit to the Program

- The major program goal being addressed is well integrity in onshore unconventional wells.

- This research project is developing techniques to mitigate risks to well integrity associated with shale gas development, to remediate failed annular seal to stop communication in an existing well, to improve techniques that enhance lifelong wellbore annular isolation during the wellbore construction process, and to prevent potential annular seal failure which can cause sustained casing pressure (SCP) later in the well life.
Project Overview: Goals and Objectives

• Develop techniques to mitigate risks to well integrity associated with shale gas development
• Remediate failed annular seal to stop communication in an existing well
• Improve techniques that enhance lifelong wellbore annular isolation during the wellbore construction process
• Prevent potential annular seal failure, which can cause sustained casing pressure (SCP) later in the well life
Project Overview

- RPSEA funded project to:
 - Devise a protocol to assess gas flow potential and apply appropriate methods to prevent SCP
 - Devise a method to detect, diagnose, and remediate unwanted gas flow the result in SCP
- Focused in Fayetteville Shale
Sustained Casing Pressure (SCP)

- API STD 65-2 defines SCP as pressure in an annulus of casing strings that is:
 - Measurable at the wellhead of a casing annulus that rebuilds to at least the same pressure level when bled down
 - Not due solely to temperature fluctuations
 - Not a pressure that has been imposed by the operator

- SCP is not an indicator of well failure, but is an indicator of poor wellbore integrity
SCP Development Mechanisms

Short Term
- Occurs during cement setting reaction
 - Hydrostatic pressure reduction due to GST
 - Hydration Volume Reduction
- Channeling

Long Term
- Occurs after cement has set
 - Mechanical failure of cement
 - Poor mud removal
- Microannuli
Initial Fayetteville Shale Well Architecture

9 5/8" CASING IN 12 1/2" HOLE, 1000 FT. TVD, CEMENTED TO SURFACE

UNDERGROUND AQUIFER

POTENTIAL GAS PRODUCING SAND ZONE

5 1/2" CASING IN 8 3/4" HOLE, 2500-4500 FT. TVD, CEMENTED TO SURFACE

FAYETTEVILLE SHALE

≈ 5000 FT. HORIZONTAL SECTION

Image by Scott Holt, Wild Well Control Inc.
SCP Prevention In Fayetteville Shale

• Root cause analysis comprising of:
 – Comprehensive data mining campaign
 – Field personnel sent to location to observe cementing and stimulation operations
 – Current cement design testing
Data Mining Results

- Both short and long term mechanisms present
Cement System Testing Results

• Lead systems
 – Slow to develop compressive strength
 – Low ultimate compressive strength
 – High deformation
 – All results inadequate at surface casing shoe conditions

• Tail system
 – Adequate…but could be better
SCP Prevention Solution

• Optimize the lead system through density increase and additive manipulation

• Leave TOC below the surface
Cement to Surface

• 89.1% of wells with low TOC did not have SCP before stimulation

• Lowered TOC would allow:
 – Aid in the prevention of both short and long term mechanisms
 • Use of a higher density better quality cement
 • Shorter cement column, lower GFP
 – Provide numerous options should remediation be necessary
Regulation Change

- Proposed to change the regulation to allow for cement to be left below surface
- Change official as of May 22, 2015
 - Allows cement to be left below surface on production casing
 - Regulation change was driven directly from the results of the work done for this project
New Regulation

REGION 1: TOP OF CEMENT – 100’ INSIDE SURFACE CASING SHOE
REGION 2: TOP OF CEMENT – 500’ BELOW SURFACE CASING SHOE
REGION 3: TOP OF CEMENT – 1500’ BELOW SURFACE CASING SHOE
Results after Regulation Change

• Single cement system being used on all wells
 – 14.2 ppg
 – Increased FL Control, FF Control, Lowered GST

• Initial results indicate under 15% of new wells develop SCP – **70% reduction**
 – Limited sample size due to current economic status
Remediation of SCP

- “Perf and Squeeze” only option
- Much less than 50% success rate
 - Proper location difficult to determine
 - Educated guess based upon drilling logs
 - Proper sealant
 - Standard cement cannot penetrate annular flow pathways
 - Proper placement technique
 - Breaking down formation instead of squeezing into flow path
Proposed Remediation

• New method in development based on 4 important “needs”:
 ▪ Location of flow pathways
 • Depth
 • Wellbore Orientation
 ▪ Assurance of communication
 ▪ Proper sealant selection
 ▪ Proper sealant placement
Developmental Flow Detection Methods

- Two methods in development to satisfy the first “need” of new remediation method
 - **Active Method**
 - Development of an Acoustic Tool
 - Based on “bubble detection"
 - Orientation and depth
 - **Passive Method**
 - Standard Low Frequency Noise Log Tool (NLT)
 - Developed signal analysis software
 - Depth and potentially type and magnitude of flow
- Used independently or jointly to locate flow
Active Method - Bubble Detection
Bubble Detection – Lab Testing
Active Flow Detection

• Prototype built and successfully tested in lab
• Stipulation – 2 phases must exist in the annular flow path
• Awaiting field trial
 – Planned trial August 22, 2016
Remediation Sealant

• Identified and tested sealants capable of penetrating small annular flow pathways
 – Developed a resin system and determined it as the best candidate for sealant in SCP remediation operations

• Resin Placement Advantages
 – Newtonian flow behavior
 – Increased depth of treatment as this allows flow into micro-geometries unachievable by even micro-cements
Remediation Sealant

- Resin vs. Cement Mechanical Advantages:
 - Increased strength / flexibility / durability
Accomplishments to Date

• Prevention
 – Root cause analysis of SCP occurrence in Fayetteville Shale
 – Changing of cementing regulations in region to allow for cement to be left below surface
 – Improvement of cement system currently being used
Accomplishments to Date

• Remediation
 – Behind casing flow detection tool prototype developed (to be tested August 22nd, 2016)
 – Resin sealant developed and tested that will provide superior mechanical properties and penetration than standard or specialty cements
Synergy Opportunities

• Collaboration among projects could provide the following benefits to this project:
 – Additional sealant technologies for annular barrier remediation

• From this project:
 – Resin being used as a sealant in annular sealing operations
 – Behind casing flow detection
Key Findings

• Using an in depth, detailed root cause analysis to identify and categorize the development mechanisms of an issue is key in determining how to resolve that issue

• SCP can be controlled and prevented through engineering and cement design optimization

• Ultrasonic tools are capable of detecting bubbles behind casing using the dual pulse method
Upcoming Operations

• Prototype tool field trial – 8-22-16
• Remediation method and resin sealant field trials
 – August 10, 2016
 – August 17, 2016
• Final report for project will be finished and submitted by September 30, 2016
Funding for the project is provided through the “Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program” authorized by the Energy Policy Act of 2005. This program—funded from lease bonuses and royalties paid by industry to produce oil and gas on federal lands—is designed to assess and mitigate risk enhancing the environmental sustainability of oil and gas exploration and production activities. RPSEA is under contract with the U.S. Department of Energy’s National Energy Technology Laboratory to administer three areas of research. RPSEA is a 501(c)(3) nonprofit consortium with more than 180 members, including 24 of the nation's premier research universities, five national laboratories, other major research institutions, large and small energy producers and energy consumers. The mission of RPSEA, headquartered in Sugar Land, Texas, is to provide a stewardship role in ensuring the focused research, development and deployment of safe and environmentally responsible technology that can effectively deliver hydrocarbons from domestic resources to the citizens of the United States. Additional information can be found at www.rpsea.org
Organization Chart

• Project team:
 – CSI Technologies (Primary)
 • Majority of research on prevention and remediation parts of the project
 • Project Manager
 – Southwestern Energy
 • Partnering Operator for this project
 – The Measurement Group (Subcontractor)
 • Prototype flow detection tool development
 – University of Houston (Subcontractor)
 • Aided in root cause analysis
<table>
<thead>
<tr>
<th>ID</th>
<th>Notes</th>
<th>Task Name</th>
<th>Start</th>
<th>End</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Project Management Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Technology Status Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Technology Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Other Reports and Special Items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Analyze current problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Analyze Well Data and Performance; Nature of Gas, Water, Salinity, and Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>DevelopAcoustic Property Tool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Investigate Analytical Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Develop Potential Solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Create Diagnostic Protocol and Decision Support System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Create Gas Chart QH5 Normalized Protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Calculate Transmission, Total, and Decision Support System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>CREATE NEW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Acoustic Flow Acceleration Tool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Acoustic Wavelets for Nondestructive and Nonintrusive Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Apply Remedial Methods while Monitoring Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Apply Remedial Methods while Monitoring Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Evaluate Support of Remediation Proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Evaluate Success of Remediation Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Prepare Technical Reports, Presentations and Reports</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bibliography
