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Benefit to the Program

 Program goals addressed

— Develop and validate technologies to ensure
99% storage permanence

— Develop Best Practice Manuals (BPMs) for
monitoring, verification, accounting (MVA),
and assessment; site screening, selection,
and initial characterization; public outreach,
well management activities; and risk analysis
and simulation.

wLW



Project Benefits Statement

The project will conduct research under Area of Interest 1,
Geomechanical Research, by developing a new
protocol and workflow to predict the post-injection
evolution of porosity, permeability and rock mechanics,
relevant to estimated rock failure events, uplift and
subsidence, and saturation distributions, and how these
changes might affect geomechanical parameters, and
consequently reservoir responses. The ability to predict
geomechanical behavior in response to CO, injection,
If successful, could increase the accuracy of
subsurface models that predict the integrity of the
storage reservoir.
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Project Overview:
Goals and Objectives

Overall Objective

Improve understanding of the effects of CO,
Injection and storage on geomechanical,
petrophysical, and other reservoir properties.

« Combines integrated, interdisciplinary
methodology using existing data sets (Rock
Springs Uplift in Wyoming)

« Culminates in integrated workflow for potential
CO, storage operations
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Project Overview:
Goals and Objectives

Specific Objectives

1) Test new facies and mechanical stratigraphy classification
technigues on the existing RSU dataset

2) Determine lithologic and geochemical changes resulting
from interaction among CO,, formation waters, and reservoir
rocks in laboratory experiments

3) Determine the effect(s) of CO,-water-reservoir rock
Interaction on rock strength properties; this will be
accomplished by performing triaxial strength tests on
reacted reservoir rock and comparing the results to
preexisting triaxial data available for reservoir rocks



Project Overview:
Goals and Objectives

Specific Objectives (continued)

4)

5)

6)

7)

8)

ldentify changes in rock properties pre- and post-CO,
Injection

|dentify the parameters with the greatest variation that would
have the most effect on a reservoir model

Make connections between elastic, petro-elastic, and
geomechanical properties

Develop ways to build a reservoir model based on post-CO,-
Injection rock properties

Build a workflow that can be applied to other sequestration
characterization sites, to allow for faster, less expensive, and
more accurate site characterization and plume modeling. ~



Project Overview:
Goals and Objectives

Relationship to DOE program goals

Our approach can be adapted to other sites to guide
site characterization and design of surveillance and

monitoring techniques to meet the goal of 99% safe
storage, reach £30% model accuracy, contribute to

the BPM, and reduce time and cost of site

characterization.
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Technical Status

Interdisciplinary Team

Vladimir Alvarado: Assistant Project Manager, Reservoir
Engineer

Erin Campbell-Stone: Structural Geology, Geomechanics,
Wyoming Geology

Dario Grana: Rock Physics
Kam Ng: Geomechanics
John Kaszuba: Project Manager, Geochemistry
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Technical Status
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Technical Status

RSU Stratigraphy

Target Reservoirs
(Weber Sandstone & Madison Limestone)

3400 — 3600 m (11150 — 11800 ft)

3725 — 3855 m (12225 — 12650 ft)
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Technical Status
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Technical Status

Cross Plot of P-Impedance vs. Porosity
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Technical Status

Cross Plots of Porosity vs. Permeabillity
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Technical Status
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Technical Status
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Technical Status
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Technical Status

Porosity

Seizmic survey sres
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Technical Status

Permeability
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Technical Status

Geomechanical Tests

alalluChy Pore Pressure |Effective Confinin
Treatment Testing Method Quantity of |Temperature (C) . nng
Specimens (psi) Pressure (psi)
Unjacke_ted Hydrostatlc_ 1 RT* 0 Ramp to 13,000
Compression (w/ ultrasonic)
Dry
Jacketgd Hydrostatic ' 1 RT 0 Ramp to 13,000
Compression (w/ ultrasonic)
90.3 5300
. : (Sandstone) (Sandstone)
Uniaxial Test (w/ ultrasonic) 1 93.1 5750 0
: (Carbonate) (Carbonate)
Saturated w/ Brine 90 3 5300
. : (Sandstone) (Sandstone)
Triaxial Test (w/ ultrasonic) 3 93.1 5750 1000, 5000, 8000
(Carbonate) (Carbonate)
90.3 5300
. : (Sandstone) (Sandstone)
Uniaxial Test (w/ ultrasonic) 1 93.1 5750 0
Saturated w/ Brine (Carbonate) (Carbonate)
and CO2 90.3 5300
. : (Sandstone) (Sandstone)
Triaxial Test (w/ ultrasonic) 3 93.1 5750 1000, 5000,28DP00
(Carbonate) (Carbonate)




Technical Status

Hydrostatic Tests on Jacketed Dry Samples
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Accomplishments to Date

1)

2)

3)

4)

Geostatistical inversion of prestack seismic data for the joint
estimation of facies and seismic velocities using stochastic
sampling from Gaussian mixture posterior distributions was
conducted.

Seismic-based, coarse scale porosity models have been
generated. Porosity-permeability correlations have been
obtained based on core data.

Weber Sandstone and Madison Limestone plugs were
characterized for gas porosity and permeability, and time-
domain NMR.

Hydrostatic geomechanical tests have been completed.
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Synergy Opportunities

INTERPRETATION Call-for-Papers

* Issue Date: November 2017
» Submission Deadline: January 20, 2017

Topic: Multidisciplinary studies for geological and
geophysical characterization of CO2 storage reservoirs

Organizer: Dario Grana, University of Wyoming

Co-Editors: John Kaszuba, University of Wyoming
Vladimir Alvarado, University of Wyoming
Mary Wheeler, University of Texas
Manika Prasad, Colorado School of Mines

QUW Sumit Verma, University of Texas Permian Basin 53



Summary —
Key Findings 2015-2016

« Two distinguishable correlations between impedance and

porosity are applicable to the Madison Limestone and the
Weber Sandstone.

« Core-log correlation works well for the Madison Limestone
and for most of the Weber Sandstone, except perhaps for
the bottom, least porous portion of the interval.

* Refinement of the seismic-based static model needs to use
reprocessed seismic survey to increase resolution.
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Summary — Future Plans

« Continue geochemical tests

* Begin coreflood tests

« Begin capillary pressure tests

« Begin geomechanical tests (unreacted samples)

« Reuvisit rock physics models
— Re-evaluate inversion of seismic data to improve resolution

— Incorporate results of impending geomechanical tests into rock physics
model

— Extend rock physics models to a 3D static model of the reservoir

wLW .



Summary — Future Plans

Preliminary Workflow
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Organizationa

-_Project management

Research scientists

Graduate students/Postdoctoral researcher

Figure 1. Organizational chart.

CO,-H,0-rock interactions

Rock physics

Geomechanics
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Gantt Chart

Task Name 4, 2014

Task 1.0 - Project Management
and Planning
Subtask 1.1 — Project
Management Plan (FMF).
Milestane A. Updatad Projact
Management Plan
Subtask 1.2 — Project Meetings

Milestane B, Kickoff Meeting
Subtask 1.3 - Reporting

Subtask 1.4 — Project
management

Tazk 2.0 - Construction of
Advanced Rock Property Model
Subtazk 2.1 — Formation Evaluad

sbtask 2.2 — Facies Classi

Subtask 2.3 ~Rack Physics
Model Development
Subtask 2.4 — Refine
Geomechanical Madal and
Subtask 2.5 af
Advanced Rock Property
Madel
Milestone €. Quick-Look
Repart-Tazk 2 Summary

Tazk 3.0 — Cond:

COZ-Water-Rock Experiments
Subtask 3.1 —Select and Obtain
samplas for Expariments
Milestane D. List of Rack
Samples Selected,/Obtained for
CO2-Water-Rock Expériments

sk 3.2 - Characterize
samples for Experiments
Subtask 3.3 - Perform
Geochemical Calculations and
Use Results to Design Plan for
Grochemical-Mineralogic
Experiments

Milestane £ Quick-Look
Report-Experimental Plan
Subtask 3.4 Perfarm
Geochamical-Minsralogic

Milestane F. initiste
CO2-Water-Rock Expér
Subtask 3.5 — Update

Geochemical Caleulations and

Use Results 1o Design Plan for
Carefload Experiments
Milestone G. Interim Report
with Plan for Coreflood
Subtask 3.6 — Perform
Goochemical Saturatian and
Corefloading Experiments
Subtazk 3.7 Repart of
Experimeantal Results

~Laok
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Repart-Results of
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Task 4.0 - Geomechanical
Experiments

Subtazk 4.1 - Triaxial Exparin

Milestane I intiate
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Milest Repart
of baseline geomechanical
experiment results
Subtask 4.2 — Evaluation of
Geomechnical Properties
Subtask 4.3 - Report
Geomechanical Results and
Analyses
Milestone K, Quick-Loak
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Expariments

Task 5.0 - Statistical Rack

Physics Model Development

Milestane L. Quick-Lock
Report-Task 5 Summary

Milestone M, Intarim Report of
Subtask 6.1
Subtazk 6.2 — Reservolr

Subtask 7.1 —
o-independent and
Milestone O. In

ate Simulatic

Subtazk 7.2 — Time-dependent
model update
Milestane P, Quick-Look
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Milestone Chart

"Integrated Characterization of CO2 Storage Reservoirs on the Rock Springs Uplift Combining Geomechanics, Geochemistry, and Flow

Modeling” - DE-FED023328

Budget Planned
_g Task/Subtask Milestone 1D/Description - Verification Method
Period Completion
1 1.0 A. Updated Project Management Plan 11/7/2014 PProject Management Plan file
1 1.0 B. Kickoff Meeting 11/30/2014 JPresentation file
D. List of rock samples selected/obtained for CO2-Water-Rock
1 3.0/3.1 |experiments to include pertinent sample properties (formation, 3/6/2015 |List
Jlithology, depth, facies)
E. Plan that describes the details of the geochemical-mineralogic ; .
1 3.0/3.3 .\ 4/30/2015 JQuick-look report with plan
experiments to be performed
1 3.0/3.4 | F. nitiate co2-water-Rock experiments 5/20/2015 [|E™mail to FMP describing
initiation
C. Summary of the activities and results from Task 2.0 for the )
1 2.0/25 8/31/2015 JQuick-look report
ladvanced rock property model
Interim report to FMP with
2 3.0/3.5 G. Plan for coreflood experiments 10/1/2015 plan for coreflood
experiments
2 7.1 0. Initiate Simulations 10/31/2015 F'E‘f"' _t° FP describing
initiation
. . . Email to FMP describing
2 4.0/41 I. Initiate geomechanical experiments 12f1/2015 | ... ..
initiation
Interim report to FMP with
2 4.0/41 1. Report of baseline geomechanical experiment results 3/21/2016 Jresults of baseline
eomechanical experiments
hinterim report to FMP
2 6.0/6.1 M. Report of Subtask 6.1 seismic reservoir characterization 8/30/2016 Jdescribing seismic reservoir
characterization
L. Summary of the activities and results performed in the rock ) ; )
3 5.0 ) - 10/31/2016 JQuick-look report
Jphysics model development and analysis in Task 5.0.
N. Summary of the activities and results performed in
development and analyses of the initial static model, and the .
3 6.0/6.2 i . ) 12/29/2016 JQuick-look report
modeled petrophysical, geomechanical, and elastic response and
Jimplications for monitoring, performed in Task 6.0.
K. Report of results and analyses of the geomechanical
3 4.0/4.3 .p ¥ g 2/28/2017 JQuick-look report
experiments
3 3.0/3.7 H. Rgport of analyses and results studied in the CO2-Water-Rock 4/14/2017 |auick-ook report
experiments
3 72 _P. Rep?rt sgmmarizing the activities and results performed in the 8/31/2017 auick-ook report
simulations in Task 7.0.
Q. Report summarizing the workflow, accompanying
3 8.0 documentation, and activities and results performed in Task 8.0 for] 8/31/2017 JQuick-look report

Ithe workflow definition and accompanying documentation.
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