

SECARB Early Test Retrospective

Susan Hovorka, Ramón Treviño, Tip Meckel, Jacob Anderson, Seyyed Hosseini, Jiemin Lu, JP Nicot, Katherine Romanak, Changbing Yang, Vanessa Nuñez-Lopez

SECARB Test Site Location

Frio Brine Storage tests

DAS

Tuscaloosa Fm

-275

Cranfield: geological location

Tuscaloosa confining system

Tuscaloosa D-E reservoir

Oil-water contact Based on log annotation and recent side-walls

 Injector
 Producer (monitoring point)
 Observation Well

Overview

- > 1 Million metric tonne / yr injection
- Quick start up = "Early test" (bridge between pilot scale and SECARB's Plant Barry/Citronelle anthropogenic test)
- Of possible sites, Denbury's Cranfield field scheduled for 2008 CO₂ injection start was favorable:
 - Time to collect pre-injection data before injection
 - Build quickly to >1 MMT per year CO₂ injection rate (sufficient to assure project metrics were met & *exceeded*)
 - Experienced operator in CO₂ EOR low risk of permitting delay: early results for RCSP program
 - Field abandoned (40 years); pressure recovered and equilibrated

Favorable Characteristics of Cranfield for SECARB Early test

- Follow-on between Phase II and Phase III
- Phase III planned in water leg downdip of oil zone
- Provided RCSP experience with CO₂ EOR, (grew in importance)

Less than-ideal characteristics

- CO₂ from Jackson Dome (not anthropogenic)
- Field commercial EOR
 - operational aspects not under project's control
 - some data proprietary
- Research purpose only
 - Designed prior to EPA or international regulations
- Relatively complex geology both deep & near surface
- Modeling reservoir's injection response complicated
 - by oil presence
 - injection and withdrawal complexities managed...

Simplified by:

Focus on the DAS - brine only

Early timing - production & recycle was minimal

Developing the Experiment

- Year-long series of meetings (2007-2008)
 designed plan
- Aligned general research objectives
 - well locations
 - selected team members
 - budget
- Designed detailed plans major components
- Adapted to fast EOR field development
 - NEPA permitting (slow)
 - other timeline issues
 - equipment rental
 - procurement
 - cash flow (2009 "cash call")

Project objectives

- Connect CO₂ plume development with pressure response
 - in far-field of reservoir ("in-zone")
- Above-Zone Monitoring Interval (AZMI) pressure response
 - first time in CCS
- Advance understanding of geomechanical response (deformation, microseismic)
- Advance understanding of
 - risk to groundwater / value of groundwater as a monitoring approach
 - soil gas methods as a monitoring approach

AZMI

Team contributions (2)

• LLNL

- Multiphase geophysics
- Cross-well EM fielding and interpretation
- USGS
 - reservoir fluid sampling & analyses
- Schlumberger Carbon Services
 - well logging
 - Cross well Seismic
 - AZMI fluid collection

- LBNL / NRAP
 - U-tube,
 - 3-D VSP
 - downhole fiber optic CASSM
 - Oak Ridge NL
 - PFT and sampling
- University Edinburgh
 - Noble gasses
- Local landowners
 - access
- Walden Consulting
 NEPA

DAS Monitoring Site

Closely spaced well array to examine flow in complex reservoir

Petrel model Tip Meckel

Time Lapse Resistivity Changes

Initial CO₂ Breakthrough in F2

Initial CO₂ Breakthrough in F3

Time Lapse Resistivity Changes

Time Lapse Resistivity Changes

After Workover in 9/2010

Contributions: Support Collaborators

CFSES

- rock samples for geomechanics

- NRAP
 - field site for 3D-VSP
- SIM SEQ

- comparative modeling data set

- NETL
 - CO₂ EOR model data

Accomplishments

- Monitored CO₂ injection 2008 2015
- Injection through 23 wells, cumulative volume over 8 million metric tons
- First US test of ERT for GS (deepest)
- Time lapse plume imaging with cross well seismic, VSP, RST, & surface 3-D seismic
- RITE microseismic none detected
- Groundwater sensitivity assessment (pushpull)
- Recognized by Carbon Sequestration Leadership Forum (CSLF) in 2010 for research contributions
- SIM-Seq inter-partnership model development test
- Knowledge sharing to Anthropogenic Test and other U.S./International CCS projects

"Early Test's" Major Contributions

- Large volume injection bridged RCSP to current & future anthropogenic sources
- Value of AZMI pressure monitoring in demonstrating reservoir fluid retention
- Probabilistic monitoring helps history-match fluid response to injection in a complex reservoir
- Process-based soil gas method developed and demonstrated for the first time
- Demonstrated utility and site-specific limitations of groundwater monitoring

Ongoing (1)

- Model additional scenarios incorporating uncertainties
- Forward-model seismic response
- Compare Cranfield ERT to Ketzin
- Evaluate ERT for long-term viability (distinguish noise from signal)
- Determine time-dependent capacity through modeling
- Participate in ISO 265
- Further optimize process-based soil-gas method
- Further optimize groundwater uncertainties

Ongoing (2)

- Technology transfer
 - Deployment of monitoring strategies developed at SECARB "Early" test as well as other RCSP and international CCUS sites
 - Support for maturation of monitoring for EOR as well as saline sites through international standards, best practices, critical reviews

Cranfield NE section model

- **Compositional simulation**
- Total number of block = 82,500

- CO₂ distribution:
 - Super critical phase: ?%
 - Dissolved in oil: ?%
 - Dissolved in brine: ?%

Injection-Production data

- Available injection/production data:
 - Oil, gas, and water production rates
 - CO₂ injection rate

- Well constraints:
 - CO₂ injection rate, Oil production rate
- History match :
 - Gas and water production rates, breakthrough times

History matching

Results and future plans

• CO₂ distribution (2012):

- Super critical phase: 56%
- Dissolved in oil: 26%
- Dissolved in brine: 18%
- Running extended simulations and scenarios
- Compare with 4D seismic

Optimizing and Upscaling Process-Based Monitoring Technology

TM 1677 M

A'R'A

Understanding Complex Environments

Testing and Developing Sensing Capabilities

- Continuous
- Real-time
- Smart

Current Method Shortfalls

- Requires a manned gas chromatograph (GC)
- Time- and labor-intensive
- Requires consumable supplies
- No continuous real-time data

"User-Friendly" for Public Engagement

- Instant data reduction
- Reduces risk of false positives.
- Graphical analysis
- Continuous monitoring capability will give instant real-time leakage detection information.

Extra Slides

Process-Based Gas Ratio - 1

 O_2 vs. CO_2

- Indicates natural processes
 that affect CO₂
 concentrations
- Distinguishes among respiration, CH₄ oxidation and dissolution
- Gives an initial assessment of leakage

Process-Based Gas Ratio - 2

N₂ (volume %)

