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‘ 1. Introduction I 3.1 Problem Setup 3.5 Model Comparison of CO, Plume Migration at Day 595
¢ Five numerical simulations were run: e Domain size: 150 x 1000 x 1000 f¢3 Full Field, Brick Model Full Field, Hexahedral Model
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Slice near Injector CFU 31F1, Brick Model Slice near Injector CFU 31F1, Hexahedral Model

e Recent history matching studies have predicted the develop- e Hexahedral grid resolution: 26 x 188 x 176 = 860, 288 elements

ment of high permeability channels at Cranfield when the CO2
injection rate was doubled. [1] This suggests the need for ge-
omechanical modeling.
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e Simulation time: 595 days, maximum At = 1 day
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Compositional Flow

Linear Elasticity

Druker-Prager Plasticity
Stress-dependent Permeability

9.829¢e-01

Co2

7.361e-01

—0.73719

e Linear elasticity is the predominant solid material model used
in simulations, but nonlinear constitutive models can take into [« P /
account more complex rock formation behaviors. L
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Inj. Rates 5-10 MMSCFD
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e Cranfield Domain with CO, Injection Formation Shaded ¢ Closeup of Hexahedral Grid Resolution
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e Plastic behavior can occur near wellbores, resulting in R .
changes to rock porosity and permeability, which can impact
flow behavior.

Area of Interest:
Injector CFU 31F1
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e The Drucker-Prager plasticity model has been incorporated
into IPARS (Integrated Parallel Accurate Reservoir Simulators
developed at the Center for Subsurface Modeling, The Univer- i
sity of Texas at Austin). Schematic of the Cranfield CO, sequestration project in

western Mississippi, with wells monitored by the Bureau of

e Our models use general hexahedral elements for flow and me- _
Economic Geology.

chanics and can solve large-scale problems in parallel.

2. Plasticity Model _ _
\é 3'2 MOdeI Comparlson Of FIUId Pressure at Day 595 E0'6572

Fluid Flow and Stress Equilibrium Equations (single-phase shown for simplicity) Simulation 1 Simulations 2, 3, and 5 Simulation 4 E
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Hooke’s Law and Strain-Displacement Relation Yield and Flow Functions (Drucker-Prager) E E 3.6 Model Comparison of Bottom Hole Pressure (BHP) at Injector CFU 31F1
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Here p is fluid density, ¢ is initial porosity, « is the Biot coefficient, ¢, is volumetric strain, M is the Biot modulus, p is fluid pressure, e 5-703¢+03 . e l
K is permeability, . is fluid density, ¢V h is gravitational force, ¢ are fluid sources/sinks, ¢” is effective stress, o is initial stress, f is a3 L ¢ " /- ‘ i
solid body force, D¢ is the Gassman tensor, ¢ is elastic strain, € is plastic strain, u is displacement, )\ is a consistency parameter, F’ _ . . . _
is plastic flow function, Y is plastic yield function, ¢ is the Von-Mises stress, # and v are the yield and flow function slopes, and 7 is Volumetric Strain Volumetric Plastic Strain
the shear strength. 31 ! ! ! ! ! ! ! !
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e Plastic model is non-linear. A Newton iteration is used to solve the mechanics residual time [day]
equations on a global level, and a second Newton iteration is used to evaluate material _ : :
integration on the element level. This leads to a consistent formulation, and our numerical —»| Time step n +1 _’ VSTRAIN T o0 » Note: The curves for simulations 2, 3, and 5 appear over top of each other (blue, green, and magenta curves).
results show quadratic Newton convergence. * E_S'eose-os E |

e To solve an elastic model, we may set plastic strain ¢ = 0, and the mechanics equation Fixed stress iter. £  |«— —g-o.oosooos ‘§°-°°°49°25 4. Conclusions and Future Work
becomes linear. v €-0.012001 EO_OOOS%% _

e The coupled poro-plasticity system is solved using an iterative coupling scheme: the Solve flow system : E Conclusions:
nonlinear flow and mechanics systems are solved sequentially using the fixed-stress using Newton method E-o.msooz E°-°°°16342 e Distorted hexahedral geometry and gravitational effects had positive impact on results.
splitting, and iterates until convergence is obtained in the fluid fraction. To the best of our * 1.9610-02 0.000¢+00 e Mechanics allows computation of displacements and stresses. Nonlinear mechanics allows computation of plastic strain.
knowledge, the application of this algorithm is new for plasticity. Solve plasticity system o - .

using Newton method e Both types of mechanics did not significantly impact well BHP.

* On any given Newton iteration, both flow and mechanics linear systems are solved us- + e Mechanics with stress-dependent permeability had a noticeable effect on well BHP, but model calibration is needed
ing the iterative multigrid solver library HYPRE. This efficiently obtains the solution with 3.4 Change in Stress Dependent Permeability ’ '
excellent parallel scalability. Yes AFan+1d|| < TOL, TN Future Work:

z-Permeability at Day 0 z-Permeability at Day 595 e Use this forward model in history matching and optimization studies.

e Use additional stress-dependent permeability models and calibrate their coefficients.

e Incorporate more accurate well information and employ local grid refinement and local time stepping techniques.

‘ 3. Numerical Results I

e Perform near-wellbore studies with discretely meshed well for better shear stresses and plastic effects.

e Our latest numerical experiments use: e High-Performance Computing Setup: e e References I
— Accurate hexahedral geometry — Jobs run on Stampede supercom- o |
— Fully compositional multiphase flow puter at Texas Advanced Comput- 100 100

[1] M. Delshad, X. Kong, R. Tavakoli, S. Hosseini, M.F Wheeler. Modeling and simulation of carbon sequestration at Cranfield
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incorporating new physical models. International Journal of Greenhouse Gas Control, 18:463—473, 2013.

— Parallel simulations used 512 cores
across 32 compute nodes.

— The longest runtime was 34 hours.
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— Drucker-Prager poro-elasto-plasticity
— Stress-dependent permeability

— Rock properties from Sandia tests [2]
— 14 injection/production wells
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