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= Fractures in cement used to seal = Chemical interactions between cement and CO, is " Sealing occurs at longer residence times as the brine
wells are potential leakage captured using a reduced physics model. The stays In the fracture longer and becomes saturated.
pathways In the wellbore. assumptions of the model are: = Smaller apertures seal at shorter residence times due to
» Chemical reactions and » Reactions only occur at the fronts. significant flow rate reduction upon precipitation.
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the permeability of these = Transport between the fronts is via diffusion: . Fractures_ seal at lower residence times under stress as
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= Reaction between cement and IR across the front Slng le and Two Phase Flow
carbonated brine results in
dissolution of portlandite, and : : : » Fracture sealing is helped by reduced brine saturation as
precipitation of calcite leading Mechanical and Hyd raulic COUD“”Q the reduced brine permeability increases residence time.

to altered cement layers. |
= However, two-phase flow can increase CO, leakage

" Altered cement has lower rates as CO, has higher mobility and lower density.
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Calcite precipitate zone CaC0; — CaZ* + COZ- = Deformation of the altered cement reduces the aperture.
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formulation for single or two phase flow.

Reactions associated with the altered cement layers
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