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Motivation 

 Fractures in cement used to seal 

wells are potential leakage 

pathways in the wellbore. 

 Chemical reactions and 

mechanical deformation affect 

the permeability of these 

fractures. 

 We have coupled transport, 

chemistry, and mechanics in 

GEOS to predict permeability 

evolution of leakage pathways. 
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Reactions associated with the altered cement layers 

 Sealing occurs at longer residence times as the brine 

stays in the fracture longer and becomes saturated. 

 Smaller apertures seal at shorter residence times due to 

significant flow rate reduction upon precipitation.  

 Fractures seal at lower residence times under stress as 

deformation reduces aperture, which reduces flow rate.  
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1 Gasda et al., Environ. Geol., 2004, 46(6-7):707–720. 

Cement and CO2 Interactions 

 Reaction between cement and 

carbonated brine results in 

dissolution of portlandite, and 

precipitation of calcite leading 

to altered cement layers. 

 These layers have different 

mechanical and petrophysical 

properties. 

 Calcite can also precipitate 

within the fracture. 

Calcite precipitate in fracture2 

Altered layers in cement1 

1 Walsh et al., Int. J. Greenhouse Gas Control, 2014, 22:176-188. 
2 Yalcinkaya et al., Energy Procedia, 2011, 4:5335-53342. 

 Chemical interactions between cement and CO2 is 

captured using a reduced physics model. The 

assumptions of the model are:  

 Reactions only occur at the fronts.  

 Transport between the fronts is via diffusion: 
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 Effective diffusion coefficient for each layer depends 

on its porosity and tortuosity.  

 Front movement is controlled by diffusion or reaction 

based on which phenomenon is slower: 
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Reaction Front Model 

Mechanical and Hydraulic Coupling 

 Altered cement has lower 

stiffness and yield stress, which 

may also lead to fracture sealing. 

This is captured by coupling the 

mechanical response to the 

extent of reaction.  

 The reaction fronts propagate 

radially into the asperities and 

decrease their effective stiffness. Illustration of the mechanical 

model for altered cement 

 Deformation of the altered cement reduces the aperture. 

The velocity is accordingly modified using the Darcy 

formulation for single or two phase flow. 

 

 The linear and Corey relative permeability models have 

been implemented for two phase flow. 

Chemical and Mechanical Sealing 
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Single and Two Phase Flow 

 Fracture sealing is helped by reduced brine saturation as 

the reduced brine permeability increases residence time.  

 However, two-phase flow can increase CO2 leakage 

rates as CO2 has higher mobility and lower density.  

Propagation  
of fronts 
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