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* Multi- Objective function (F):
wy X FOPT + wy X FGIT
where
w = weight assigned to vector
FOPT = Cumulative oil production
FGIT = Cumulative gas injection which is mostly CO,

Motivation for this Work

A Ampomah et al 2016 (SPE179528) presented a scenaridased model to study | e
different injection strategies effects on oil recovery and CO, storage | Sie

A Their work showed a possibility of recovering more than 30% of OOIP
Incremental oil beyond waterflood and storing 75% of purchased CO ,

A This work seeks to use and advanced optimization procedure with a multi -
objective function to improve prediction of CO , storage and/or oil recovery
and determine the best-case scenario to optimize both storage and recovery

Sensitivity analysis (tornado chart above) was used to reduce the number of control
variables to 12 Training simulations were performed to construct a proxy model.
Validation plots of the objective function and oil production are shown below. The good
match along the equiline signifies a successfulproxy.
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51 cored wells with porosity and After a successful proxy is
permeability were used to construct a achieved, the response surface
- - - static model to study CO, performance in polynomial equation is used for
FWU Reservoir Production History e unit. The two ymair12 panthropogenic the optimization process using a
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.. : . 2 . below compares baseline and
Alnitial reservoir pressure at datum of 4900 ft was 2203 psig | ._ are a fertilizer plant and an ethanol plant. optimized cases. A sample result
AQriginal bubble point pressure was 2059 psig Porosity, frac 0.09210.247| 0.146 |Reservoir properties are shown in the (left-hand table) shows a small
AOOIP ~120 MMSTB table at left. difference between simulated
ASecondaryrecovery started 1964 Permeability, mD 0.01 - 181 58 and response surface results.
ATertiary recovery started 2010
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Development Strategy (Baseline & Optimized Case) O Experiment

A Convert all injectors to WAG wells (25 wells) using both purchased and Properties Units | % Error
recycled CO,

A Decrease volume of purchased CQO, from 2022 to 2030
A Inject only recycled gas after 2030.
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1. Areal time reservoir performance model has been developed by using a fast , b
proxy methodology which can reduce computational costs without Gas Gravity 2.39 %
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2. The use of a complex multi-objective function demonstrated optimum Prescsre (pota) MMP

operational variables that yielded results of 95% of CO, stored and more than
80% of OOIP oll recovered at FWU.
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