

An Information Theoretic Framework and Selforganizing Agent-based Sensor Network Architecture for Power Plant Condition Monitoring

Kenneth A. Loparo, Ph.D. Richard M. Kolacinski, Ph.D.

2016 Crosscutting Research Review April 20, 2016

Agenda

- Introduction
 - Distributed Health and Condition Monitoring
- Information Measures
 - Entropy/Information
 - General information measures
- Information Structure of Systems
 - Properties of information
 - System decomposition
 - Computation of information measures
 - Detecting changes in system structure

Introduction

Production Systems

GREAT LAKES

ENERGY INSTITUTE

NIVERSITY

4

Information Measures

Information Theory

- Information is the amount of surprise contained in the data;
 - Data that tells you what you already know is not informative,
 - Not all data is created equal.
- The fundamental measure of information is *Shannon entropy* is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_d p(x),$$

where $X \in \mathcal{X}$ is a discrete R.V., \mathcal{X} is a finite set known as the alphabet, and $p(x) = \Pr\{X = x\}$.

 For a pair of discrete R.V.'s (X,Y) with joint and conditional distributions p(x,y) and p(x|y), the joint and conditional entropies are, respectively:

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 p(x,y)$$
$$H(X|Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 p(x|y)$$

• The relationship between these R.V.'s is captured by *Mutual Information*:

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

• Mutual Information and Shannon Entropy are related by: I(X;Y) = H(X) - H(X|Y)

Information Channels

GREATIAKES

energy Institute

• Let X and Y be the *input alphabet* and *output alphabet*, respectively, and let S be the set of channel states. An information channel is a system of probability functions:

 $p_n(\beta_1,\ldots,\beta_n|\alpha_1,\ldots,\alpha_n:s)$

where $\alpha_1, \ldots, \alpha_n \in \mathcal{X}$, $\beta_1, \ldots, \beta_n \in \mathcal{Y}$, and $s \in S$ for $n = 1, 2, \ldots$

 Mutual information between the input and output provides a measure of *channel transmittance*:

 $T(\mathcal{X}; \mathcal{Y}) = H(\mathcal{X}) - H(\mathcal{X}|\mathcal{Y})$

• The maximum over all distributions is known as the *channel capacity*.

Information Structure

- The communications topology determined by available observation processes;
 - fusing information from multiple sensors,
 - Reconstituting lost or degraded sensing,
 - Detect system changes reflected in changing communication topology.

• Identify "correlative" structure of sensor data;

- Provides means of identifying relevant (possibly abstract) subsystems,
- Basis for mesoscopic models and "summary" variables.

System Structure

Undirected Graph & Adjacency Matrix

Agents and Observations

Agent going from home node 3 to node 1:

Behavior:

The agent carries the data, w_3 , from its home node to the next node.

Food Definition:

The similarity, Correlation Coefficient, between the time series w_3 and w_1 .

- x_i: a time series which is the observations at node i
- *w_i*: a time series which is the partial observations of *x_i* at node *i*

Initialization

Time Duration at this Iteration = [0:T] Home Node = 7 Current Node = 7 Carrying Data = X₇ ([0:T]) Forward Flag = 1 Selected Next Node = 1

Time Duration at this Iteration = [0:T]Home Node = 7 Current Node = 1 Carrying Data = $X_7([0:T])$ Correlation Coefficient to Calculate is between: { $X_7([0:T])$, $X_1([0:T])$ } Correlation = Not High Forward Flag = 1 Selected Next Node = 4

Time Duration at this Iteration = [T:2T] Home Node = 7 Current Node = 4 Carrying Data = X_7 ([0:T]) Correlation Coefficient to Calculate is between: { X_7 ([0:T]) , X_4 ([T:2T]) } Correlation = Not High Forward Flag = 1 Selected Next Node = 5

Time Duration at this Iteration = [2T:3T]Home Node = 7 Current Node = 5 Carrying Data = X_7 ([0:T]) Correlation Coefficient to Calculate is between: { X_7 ([0:T]) , X_5 ([2T:3T]) } Correlation = Not High Forward Flag = 1 Selected Next Node = 3

Time Duration at this Iteration = [3T:4T]Home Node = 7 Current Node = 3 Carrying Data = X_7 ([0:T]) Correlation Coefficient to Calculate is between: { X_7 ([0:T]) , X_3 ([3T:4T]) } Correlation = High Forward Flag = 0 Selected Next Node = 7 (Home Node)

Time Duration at this Iteration = [4T:5T] Home Node = 7 Current Node = 7 Carrying Data = X₇ ([0:T]) Forward Flag = 1 Selected Next Node = 2

- Our graphs are weighted bidirectional graphs where $w_{ij} \neq w_{ji}$.
- In this case the Laplacian matrix is not symmetric and therefore its eigenvalues are not necessarily real positive numbers. This makes some problems in calculating the spectral distance with complex numbers.
- Use symmetrized Laplacian

$$L(G) = D(G) - \left(A(G) + A(G)^T\right)$$

Spectral Distance Formula

- λ_i represents the eigenvalues of the Laplac matrix for graph G - μ_i represents the eigenvalues of the Laplac matrix for graph H - use $\left\lfloor \frac{N}{2} \right\rfloor$ largest eigenvalues

Gaussian Distribution 1	Gaussian Distribution 5
with	with
1000 Iterations	1000 Iterations

Results

Gaussian Distribution	Gaussian Distribution	Gaussian Distribution	Gaussian Distribution
3	4	5	
with 800 Iterations	with 800 Iterations	with 800 Iterations	with 800 Iterations

Results

- Before calculating the change points, smoothing the distance vector eliminates small fluctuations.
- Filtered instead of Averaging is recommended.
- We suggest using "Savitzky-Golay FIR Smoothing Filter".

Results: First Data Set

Results-Second Data Set

- Minimum Mean Square Error (MMSE)
- Cumulative Summation (CUSUM)

 Combine above methods using bootstrapping and with confidence level calculations to eliminate false change points.

- 1. Check the average of candidate change points
 - Change point is the point with a value 30% higher than the average.
- 2. Calculate the angle between the line connecting two consequent candidate change points
 - Change point is the point with angle above 70 degrees.
- Both methods give similar results

Results: First Dataset

Results: Second Dataset

Interactive Network Detection Tool

- Data analytics GUI
- Takes file inputs
- User driven analysis
 - Context driven options
 - Context menus for simulation and visualization
- Integrates all tools
 - Mutual information
 - Self-organizing network discovery
 - Change detection
- Basis for future demonstration efforts

/ N	MATLAB R2015b - academic use						
	HOME PLOTS APPS						
E	Condition_Monitoring_Algorithm_main			Pheromone Accumulation Plot			
L				File Edit View Insert Tools Desktop Window Help 🛛			
Scr	Load Data Plot Data	Data Format Guidelines	V V	1) 날 날 수 속 쓴 정 못 ४ - 것			
			к				
			GUI	7000 From Data 1 to Data 3			
Cu	Simulation Specifications			From Data 1 to Data 3			
	Select Calculations Approach: Mutual Information			6000			
9			1	ALCONTRACTOR AND A STREET			
4	between [1,1000]	Start Simulation	de may nee	5000			
1							
1	Enter Desired Threshold 0.3 between [0,1]			2 4000			
1				<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>			
				<u>اھ</u>			
_	Simulation Results			2000			
1	Final intrinsic Communication Topology	Save Variables To Workspace					
	Intrinsic Communication Topology Over Time			Final Intrinsic Communication Topology			
1	Pheromone Accumulation Retween Nodes			File Edit View Insert Tools Desktop Window Help			
		Save Variables To an Excel File					
1	Travel History of a Random Agent		.▲ Gr	raph Diameter Distance Method			
	Graph Similarity Measures	Close	File	Edit View Insert Tools Desktop Window Help			
				≝⊌⊚ k < < ⊘ ⊚ ₩ ∡ · © □ ⊡ □ □			
© 2016 Case Western Reserve University			Graph Diameter Distance				
2	Chaose Nodes Pheromone		· •	2000			
				10000			
	Select First Node: Select Second Node:		ange	M A			
_	Data 1 💌 Data 3 💌		Ch	8000			
Con	Plot Phe	romone Accumulation	eof				
MA	Choose_Change_Algorithm		ftd	6000			
G			agn				
0			ž	4000			
0	Select Graph Similarity Algorithm:	Plot					
e O	cal app Callback(hOb Graph Diameter Distance			2000			
õ	cal_app_CreateFcn(hO	close					
	window size Callback	Close					

Future Application: Ultra-Supercritical Steam Plant

- Simulation of a 1000 Mwe Steam Power Plant
 - Main steam flow: 600°C at 58 bar g
 - Net heat rate: 9,045 kJ/kWh

GREAT LAKES

energy Institute

"Say ... what's a mountain goat doing way up here in a cloud bank?"