the Energy to Lead

Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy System

DE-FE0024092 2016 DOE Crosscutting Technology Research Review Meeting, Pittsburgh, PA,

Dexin Wang—Principal Investigator Gas Technology Institute April 18-22, 2016.

NETL project review meeting - April 18-22, 2016

Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy System

Agenda:

- Technology Development Background
- Project Objectives, and Team Members
- Detailed Project Tasks and Progress

Background: Water Vapor Membrane Separation Study at GTI

- Extensive study for both porous and nonporous membranes at GTI
- Porous membrane was selected for its potential high water vapor transport flux for industrial uses, and its four vapor separation modes as below:
 - Molecular Sieving
 - Knudsen diffusion
 - Surface diffusion, and
 - Capillary condensation
- Working mode of porous membrane is critical for water vapor transportation.
 - High permeate flux and high separation ratio could <u>only</u> be achieved in a <u>capillary</u> <u>condensation mode for water vapor.</u>

Simultaneous Water Vapor Latent Heat and Water Recovery from Flue Gases

GTI developed Transport Membrane Condenser (TMC) technology

- TMC uses a nanoporous ceramic membrane to selectively recover water vapor and its latent heat from natural gas combustion flue gases
 - Increase boiler efficiency and save water, avoids corrosive condensate
- Successfully developed for industrial boilers

Water Vapor Laden Flue Gas Inlet

TMC tubes in a bundle assembly

TMC Tube Wall Microgra

TMC Heat/Water Recovery System for Industrial Applications

- TMC modules integrated into a housing to form a TMC unit with controls.
- Boiler feedwater is pre-heated to boost efficiency
- Fresh makeup water requirement is reduced by flue gas water vapor recovery

Cannon Boiler Works Ultramizer®

Advanced TMC-based heat recovery systems for industrial, large commercial, and institutional boilers commercially available from

Cannon Boiler Works

- Current sizes around 10-20 MMBtu/hr
- > 92-95% efficiency
- Ongoing development to scale-up to larger sizes
 - > Over 20 MMBtu/hr

Industrial boiler heat recovery with Ultramizer product at a brewery

TMC System Field Demo for a Laundry Steam Tunnel

NETL project review meeting - April 18-22, 2016

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

NETL project review meeting – April 18-22, 2016

TMC Applications for Water Vapor Recovery from Coal Flue Gases

Benefits for the energy industry:

- Recover mineral-free water for boiler makeup and other plant uses, and reduce waste water disposal.
- Recover waste heat from flue gases to greatly enhance the energy system efficiency. Will be more significant for high moisture content flue gases from future advanced power generation system, which has much more latent heat available and easy to capture.
- Reduce water vapor emission to the environment to meet power plant regulations, and improve plant heat rate.

Pilot scale TMC Field Slip Stream Testing at a Power Plant

Pilot unit test in the field: left shows in installation, right shows in testing with a tent

NETL project review meeting – April 18-22, 2016

Current Project Objectives and Team

□ Project Objectives:

- Further improve TMC water vapor transport flux and system efficiency, ready for high moisture content flue gases from future advanced power generation system, and evaluate membranes for low PH value flue gas applications,
- Explore low cost TMC unit fabrication and control methods to reduce capital and installation costs.

□ Project Team:

Gas Technology Institute(GTI), Media and Process Technology(M&P), SmartBurn and Florida International University (FIU).

Task 2: Process Modeling

TMC Power Plant Integration Concept Update

Flue Gas Water/Heat Recovery with a Two-stage TMC

The TMC power plant integration concept has been improved and updated, especially for TMC/stage2. It will use the outlet cooling water from the condenser for TMC/stage2, instead of using the inlet cooling water. In this way, the steam condenser performance will not be affected at all, which will ensure the original plant cycle efficiency not negatively affected by the cooling water use for TMC/stage2.

Task 2: Process Modeling

Aspen Simulation with TMC integrated into a Power Plant

Aspen study shows, if the TMC/stage1 is integrated into the steam cycle, it can increase the cycle efficiency by 0.72% from a baseline 36.3%, save 2% makeup water which is 500kg/min for a 550MW unit. TMC/stage2 can recover about 3,506 kg/min water for cooling water makeup.

Task 2: CFD Simulation for Design

Task 2: CFD Simulation for Design

• Four objectives for TMC design:

1- Maximizing the heat transfer from the flue-gas to the cooling water.

2- Maximizing the condensation rate of TMC heat exchangers.

3- Minimizing the membrane tube use.4- Minimizing the amount of pressure drop.

 Effect of longitudinal and transversal pitches of the bundle tubes on the heat transfer, water recovery and pressure drop of TMC. Multiple cases with various inlet boundary conditions have been carried out.

Task 3: TMC Membrane Development for High Performance

 Advantages of zirconia and titania: superior acid resistance and potentially higher water flux at comparable pore sizes in the 40Å to 200Å range over the standard γalumina material used in our current commercial version of the TMC tubes

SEM the surface and cross section of a ZrO2 modified TMC membranes prepared as part of the production batch. The ZrO2 layer is ultrathin at <2micron thick.

Membrane ID		H ₂ O				
		[liter/m2/hr/bar]				
4Q 2015 Membranes (36"). Production Membranes						
ZrO2(50/14)-01P		228				
ZrO2(50/14)-02P		235				
ZrO2(50/14)-03P		211				
Standard MPT Alumina Membranes						
MPT 40Å Gamma Alumi	8 to 15					
MPT 100Å Gamma Alur	80 to 110					
MPT 500Å Alpha Alum	220 to 280					

Water permeance of 3 production ZrO_2 membranes pulled for QC testing, compared with various MPT alumina based substrates. This value is consistent with the 500Å alumina support membrane. Hence, the ZrO_2 layer deposited must be very thin and of high quality since the water permeance is very close to the underlying support membrane.

Task 4: Low Cost for Commercialization

 Evaluate TMC parts fabrication cost reduction approaches, which includes strategies to reduce the <u>membrane cost</u>, <u>injection/compression molding</u> methods to fabricate TMC module end caps and tube sheets, as well as potential <u>design optimization to reduce system cost</u>.

item	Supplier	υ	nit Cost	Number required	Pre	esent cost	Improvement	Fut	ure Cost
Tubes	M&PT	\$	1.69	389	\$	657		\$	657
Tubesheets		\$	330	2	\$	660	Assume compression molding @ \$60/each	\$	120
End Caps		\$	190	2	\$	380	Injection molded parts at \$10/each	\$	20
Side plates		\$	25	2	\$	50	Assume injection molding at \$10 each	\$	20
Miscellaneous parts-'O'		\$	50	1	\$	50		\$	50
ring, screws, etc.									
Ероху	Grairer	\$	47	1	\$	47	None	\$	47
Assembly labor - 1 hour for	\$55/hr assembly	\$	55	2.4	\$	132	20% due to higher	\$	106
tube installation + 20	facility						production rates		
minutes for epoxy+ 1 hour									
for assembly of end caps/O									
ring/screws = 2.4 hours									
Pressure test labor	\$55/hr assembly facility	\$	55	0.5	\$	28	None	\$	28

Table x: TMC Membrane Module Cost Estimation

2,004

1.048

Task 4: Low Cost for Commercialization

Table 5. Performance of the low purity alumina substrate with the MPT standard substrate tube.							
Part ID	Water Permeance(lmhb)	N ₂ [m³/m²/hr/bar]	Bend Strength [psi]				
SubAL- P807.02	142	27	48				
SubAL- P807.06	155	33	46				
MPT Standard Substrate	220 to 250	75 to 90	40 to 45				

- Use <u>low purity (LP)</u> alumina substrate.
- Simplify control and system design, including ductwork connections.

SEM cross section of the standard intermediate layer and top surface γ -alumina layer on the low purity (LP) alumina substrate.

Task 5: TMC Unit Design, Fabrication and Assembly

TMC Unit

TMC Unit Controls and Data Acquisition

TMC Membrane Module

NETL project review meeting – April 18-22, 2016

gti

Task 5: TMC Design and System Setup

TMC lab test system with a boiler, heat exchanger, flue gas conditioner, etc.

NETL project review meeting – April 18-22, 2016

Task 6: TMC Test System Installation and Shakedown

 \checkmark <u>Boiler:</u> successful startup of the boiler and ramp up to full fire rate.

✓ <u>TMC unit</u>: Installed and pre-tested at cold flow conditions

- <u>System control</u>: checked control system for TMC startup and parameter changes, including water inlet flow rates and temperature, vacuum and water level control, etc.
- <u>Data Acquisition</u>: A data acquisition box and computer have been setup and tested to read and record the required data.
- System shakedown: the whole test system has been run and checked, everything looks ok for next step parameter testing.

Task 7: Scale-Up and Integration Evaluation for Commercial Scale Power Plant

* From DOE Case 9 study

NETL project review meeting - April 18-22, 2016

Thanks! Questions?

NETL project review meeting – April 18-22, 2016

