

Investigation of "Smart Parts" with Embedded Sensors for Energy System Applications

<u>Yirong Lin</u>, Ph.D. Jorge Mireles, M.S. Ahsan Choudhuri, Ph.D. Ryan Wicker, Ph.D.

Department of Mechanical Engineering The University of Texas at El Paso

THE UNIVERSITY OF TEXAS AT EL PASO

Introduction and Background

Objectives

Technical Approach

Results

Summary

Given Service Work

Motivation

- Highly efficient and environmentally benign power and fuel systems require:
 - Critical Sensing in modern power plants and energy systems
 - Higher efficiencies in energy conversion
 - Lower emission for near-zero emission power plants
 - Enhanced material systems safety

- Harsh high temperature conditions are common to the efficient conversion of fuels and processes for environmental control
- Monitoring/estimating harsh conditions in real time is needed for high system performance and assessing reliability

Gasifiers

- Up to 1600°C
- Up to 1000 PSI
- Erosive, corrosive, highly reducing

Combustion Turbines

- Up to 1350°C
- Pressure ratios of 30:1
- Thermal shock, highly oxidative
- Complex geometries

Robert Romanosky, 2013, DOE NETL Crosscutting Project Review Meeting

State-of-the-Art

- Integrated thermocouples bonded to turbine blades
- Temperature measurement enabled
- Signal is sensitive to harsh environments
- Up to 1400 °C for short time

State-of-the-Art

Hahnlen, R. M. (2009). Development and characterization of NiTi joining methods and metal matrix composite transducers with embedded NiTi by ultrasonic consolidation (Doctoral dissertation, The Ohio State University).

Overview and Rationale

Multi-material fabrication using EBM^[1]

Fabrication of electro-mechanical system^[2]

- 1. C. A. Terrazas, S. M. Gaytan, E. Rodriguez, D. Espalin, L.E. Murr, F. Medina, and R. B. Wicker, "Multi-material metallic structure fabrication using electron beam melting", Int J Adv Manuf Technol, Vol 71, Issue 1-4, pp 33-45, 2014
- 2. E. Aguilera, J. Ramos, D. Espalin, F. Cedillos, D. Muse, R. Wicker, and E. MacDonald, " 3D Printing of Electro Mechanical Systems", In: Proceedings of the 2013 Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA

Overview and Rationale

- "Smart parts" with embedded sensor
 - Built-in monitoring capability
 - Accurate sensing at desired location
 - No change required post fabrication
 - Realized by 3D printing technology

Scope of Work

- Design and fabricate "smart parts" with embedded sensors.
 - EBM 3D printing technique for fabrication of "smart parts"
 - Piezoceramic sensors for temperature, strain, pressure, and structural health conditions.
- Evaluate the sensing capability of the "smart part".

Objectives

- Objective 1: Fabricate energy system related components with embedded sensors
 - Fabrication & evaluation of components without sensor by EBM
 - Manufacturing "Smart Parts" with embedded sensor by EBM
- Objective 2: Evaluate the mechanical properties and sensing functionalities of the "smart parts" with embedded piezoceramic sensors
 - Evaluation of interfacial shear properties
 - Characterization of the sensing capability
- Objective 3: Assess in-situ sensing capability of energy system parts
 - Short & long term testing to determine sensor reliability
 - Cyclic and constant loading to determine the sensing repeatability and stability

Electron Beam Melting

- Additive Manufacturing is a process for creating parts directly from a computer model based on 3D Printing technologies.
 - Builds complex, functional parts designed in a 3D CAD program
 - Eliminates variation of properties across scales
 - Wide range of applications: ceramic molds, structural ceramic parts, parts for tooling, ceramic preforms for metal matrix composites, etc

EBM Animation

by Oakridge National Laboratory

- "Stop and Go" process
- EBM fabricated manually interrupted
- Sensor embedded during fabrication at desired location

Sensing Materials

- Piezoceramic for sensing
 - Piezoelectric elements are used in smart systems due their capability of coupling energy in mechanical, thermal, and electrical domain
 - Most of applications rely on relative magnitudes of voltage, or frequency spectrum of signal modified by sensor
 - $Pb(Zr_{x}Ti_{1-x})O_{3}$, $T_{c} = 350$ °C; $LiNbO_{3}$, $T_{c} = 1200$ °C

Fabrication

- Powder Material: Ti-6Al-4V
- Mask Plate and Start Plate: Stainless steel
- Layer Thickness: 50 μm

Design of "Smart parts"

Fabrication Results

Bottom part

Masking Plate

Part press fitted into the masking plate (150 mm×150 mm) Misalignment of 435 µm

Final "smart parts"

Fabrication of Design A

Assemble of parts

After 2nd Fabrication of parts (top view)

After 2nd fabrication of parts (side view)

Dissemble of the top parts

Characterization

After EBM Capping

Metallization

Element	Weight %
Aluminum	89.3
Oxygen	6.5
Titanium	4.2

Titanium detected on alumina plate

Element	Vaporization Temperature (°C) At Pressure (Torr)						
		10-4	10 ⁻³	10-2	10-1		
Copper		1035	1141	1273	1432		
Gold		1190	1316	1465	1646		
Iron		1195	1310	1447	1602		
Platinum		1744	1904	2090	2293		
Titanium		1250	1384	1546	1742		
Tungsten		2767	3016	3309			
Yttrium		1362	1494	1650	1833		
Niobium		2355	2539				
Nickel		1257	1371	1510	1679		

Sensor Packaging Design

Sensor Packaging Fabrication

Alumina Housing by ExOne

Green Body

Sintered at 1600°C for 16hrs

Particle Size	Layer Thickness	Apparent ρ	% Relative ρ	X% Shinkage	Y% Shrinkage	Z% Shrinkage
Mixed	45µm	3.81g/cm3	96.51	8.75	10.92	8.63

Ti-6Al-4V Sensor Housing

- Ti-6Al-4V sensor housing fabricated by EBM
- SiO₂ ceramic coating
- Each applied layered is air dried
- A rougher surface finish was created for better application
- Coating is furnace cured at 650°C for 30min.
- Coating Still cracked
- Primer needed before

Successfully Fabricated Smart Parts

Smart parts Fabrication (1st run)

Force Sensing

Yirong Lin – 2016 DOE NETL Project Review – Pittsburgh, PA

Compression Force sensing

Mechanical Property Testing

Interfacial Property Enhancement Experimental Setup

Fabrication was stopped at gauge's midpoint, the machine was allowed to fully cool and the process was restarted to simulation the process of sensor embedding Tensile bars were fabricated to test mechanical properties after interrupting the fabrication process

Fabricated tensile dog-bone samples

Interfacial Property Enhancement Testing Results

Fracture Surface

Single Melt

Double Melt

Joint Microstructure

technology. Journal of Additive Manufacturing, 10, pp. 58-66

(a)

Smart Tube Fabrication

Assembled Bottom Section

Top View

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 7

Masking plate

Side View

Smart Tube Force Sensing

Temperature Sensing

Ongoing Work

Ongoing Work

- Simulation
- Hot air temperature sensing

Conclusion and Future Work

- Smart part fabrication was successful
 - " "Stop and Go" process was developed for sensor embedding
 - Masking plate was needed for the second fabrication
 - Interface between first and second EBM fabrication is key in material failure
- Sensor packaging was critical for sensor protection
 - Low pressure, high temperature harsh environment in EBM
 - Metal vaporization contamination common issue in EBM
 - Further sensor size reduction is needed for better sensor integration
- Future Work
 - IR Imaging of the fabrication process for *in situ* monitoring of paused build fabrication will be performed
 - Masking plate less fabrication process for sensor embedding
 - HIPing of the fabricated parts will be performed

Publication and Patent

- Gonzalez, J., Mireles, J., Lin, Y., and Wicker, R., 2016, "Characterization of ceramic components fabricated using binder jetting additive manufacturing technology," *Ceramics International*, in press.
- Hossain, M., Gonzalez, J., Martinez, R., Shuvo, M., Mireles, J., Choudhuri., Wicker., and Lin, Y., 2015. "Fabrication and Characterization of Smart Parts using Electron Beam Melting Additive Manufacturing Technology". *Additive Manufacturing*, in Press.
- Gaytan, S., Cadena, M., Karim, H., Delfin, D., Lin, Y., Espalin, D. MacDonald, E. and Wicker, R., 2015, "Fabrication of barium titante by binder jetting additive manufacturing technology," *Ceramics International*, 41, 6610-6619.
- M. S. Hossain, J. Mireles, and R. Wicker, "Method of Fabrication for the repair and augmentation of part functionality of metallic components", U.S. Patent Pending, filed with U.S. Patent and Trademark Office, October 2015
- Gonzalez, J. A., Hossain, M. S., Martinez, R., Rodriguez, G., Shuvo, M.A.I., Mireles, J., Wicker, R., Choudhuri, A., Lin, Y. 2015, "Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing: Characterization of Smart Parts", 5th Southwest Energy Science and Engineering Symposium (SESES), April 4th, El Paso, TX.
- Hossain, M. S., Gonzalez, J. A., Mireles, J., Lin, Y., Choudhuri, A., and Wicker, R., 2015, "Smart Part Fabrication using Electron Beam Melting Additive Manufacturing Technology", 5th Southwest Energy Science and Engineering Symposium, El Paso, TX.
- Gonzalez, Jose A., Mireles J., Lin Y., Wicker R.B., 2015, "Fabrication of Ceramic Components Using Binder Jetting Additive Manufacturing Technology." 5th Southwest Energy Science and Engineering Symposium (SESES), April 4th, El Paso, TX.
- Hossain, M. S., Gonzalez, J. A., Mireles, J., Lin, Y., Choudhuri, A., and Wicker, R., 2015, "Smart Part Fabrication using Electron Beam Melting Additive Manufacturing Technology", 2016 Southwest Emerging Technology Symposium, El Paso, TX.
- Hossain, M. S., Gonzalez, J. A., Gaytan, S. M., Lin, Y., Choudhuri, A., and Wicker, R., "Stop and Go Process to Fabricate Smart Parts using Electron Beam Melting", Power Industry Division Symposium, 2014.

Acknowledgment

- Funding support from DOE-NETL, grant DE-FE0012321
- Maria Reidpath
 - Federal Project Manager, CCRA
- Robert Romanosky
 - Acting Portfolio Manager, CCRA

Intel, inc

Inte

Intel, inc

Thank you

Questions?

References

- 1. Hahnlen, R. M. (2009). Development and characterization of NiTi joining methods and metal matrix composite transducers with embedded niti by ultrasonic consolidation (Doctoral dissertation, The Ohio State University).
- 2. C. A. Terrazas, S. M. Gaytan, E. Rodriguez, D. Espalin, L.E. Murr, F. Medina, and R. B. Wicker, "Multimaterial metallic structure fabrication using electron beam melting", Int J Adv Manuf Technol, Vol 71, Issue 1-4, pp 33-45, 2014
- 3. E. Aguilera, J. Ramos, D. Espalin, F. Cedillos, D. Muse, R. Wicker, and E. MacDonald, " 3D Printing of Electro Mechanical Systems", In: Proceedings of the 2013 Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA
- 4. Rodriguez, Emmanuel, et al. "Integration of a Thermal Imaging Feedback Control System in Electron Beam Melting." *WM Keck Center for 3D Innovation, University of Texas at El Paso* (2012).

Schedule

	Year 1			Year 2			Year 3					
	Q 1	Q 2	Q 3	Q 4	Q1	Q 2	Q 3	Q 4	Q1	Q 2	Q 3	Q 4
Objective 1												
Task 1: Fabrication Characterization												
Task 2: "Smart Parts" Fabrication												
Objective 2												
Task 3: Mechanical Evaluation												
Task 4: Sensing Demonstration												
Objective 3												
Task 5: "Smart Tube" Testing												
Task 6: "Smart Premixer" Testing												
Task 7: Modification to Fabrication												
Progress Report												
Final Report												

Hardness Testing Results

- Vickers Hardness Test was performed on the completed smart part
- No large change in Hardness value throughout the smart part
- EBM Ti-6Al-4V = **40** HRC
- Annealed Ti-6Al-4V = **36** HRC

Backup

- Add Shojib slides
- Simulation results
- Premix Fabrication
- Alternative sensor materials
- Hipping process
- Sensor packaging size reduction

Milestones

	Mile- stone	Title	Description	Relation	Validation	Date
Budget F	Period 1					
	M1	Updated Project Management Plan	Complete plans for Facility, Resources, Quality, Safety, Documentation Management, etc.	Predecessor of all following tasks	Report Plan delivered to DOE PM	12/31/13
	M2	Kickoff Meeting	Review of objectives, technical and managerial approach and other facets of project	Predecessor for tasks	Presentation delivered to DOE PM	01/31/14
	M3	Embedded Sensor Parts Fabrication	Selection of High Temperature Piezoelectric Material, determination of fabrication technique for embedded sensors	Data set for 1st Decision Point	Summarized in nearest Quarterly Report	09/30/14

Budget P	eriod 2					
	M4	Mechanical strength evaluation and sensing demonstration	Interfacial shear strength and strain, temperature, and pressure sensing demonstration	Predecessor for subsequent tasks	Summarize results in Quarterly Report	12/31/14
	M5	Calibration of Sensor performance	Calibration of sensor, determine the sensitivities of strain, temperature, and pressure sensing	Predecessor for subsequent tasks	Summarize results in Quarterly Report	03/30/15
	M6	Reliability Testing	Sensor reliability, repeatability, and stability testing	Data set for 2nd Decision Point	Summarize results in Quarterly Report	09/30/15

Budget Period 3

-						
	M7	Case study 1: "smart tube"	Demonstration of embedded sensing capability for its usage in a combustion system	Predecessor for subsequent tasks	Summarize results in Quarterly Report	12/31/15
	M8	Case study 2: "smart premixer"	Demonstration of embedded sensing of a premixer for turbine system	Data set for 3rd Decision Point	Summarized in Quarterly Report	06/30/16
	M9	Modification to fabrication process	Fabrication parameter optimization based on Case study testing results	Predecessor for subsequent tasks	Summarize results in Quarterly Report	09/30/16

Facility

Additive Manufacturing

