

2016 NETL Crosscutting Research Review Meeting

April 18-22, 2016

SBIR Phase IIA Project: DOE 12-14C

Contract #: DE-SC-0008269

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors Operable up to 1800 Celsius in Advanced Energy Generation Systems

Authors: Yiping Liu (PI), Jason Fish (Presenter), Laurel Frediani, Michael Usrey

Contact: Jason Fish, Email: jfish@sporian.com,

Phone Number: 303-516-9075 x31

Sporian Microsystems, Inc. (www.sporian.com) 515 Courtney Way - Suite B, Lafayette, CO 80026-8821

Acknowledgement

This material is based upon SBIR work supported by the Department of Energy under Award Number DE-SC0008269.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Overview

- Sporian Introduction
- Project Motivation
- Prior, Related Work
- Current Effort Progress Update

About Sporian Microsystems

• Sporian develops advanced sensors and sensor systems for a range of applications.

Core Technical Competencies

Novel Materials
Science

Leading edge signal Conditioning & Smart Electronics

Advanced
Electronics &
Hardware
Packaging

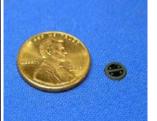
Advanced Sensor Technologies

Biological & Chemical

- Water Quality
- Gas Composition
- Biomedical
- Hyperspectral Imaging

Energy & Aerospace

- Very High Temperature
- Harsh Environments
- Asset monitoring
- PHM



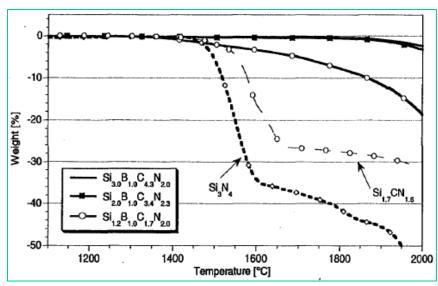
Overview of Sporian's Harsh Environment/High Temperature MEMS Sensors and Packaging

R&D focus area on high-temperature sensors and packaging

- Directly monitor the most harsh/costly sections of equipment
 - Pressure, temperature, flow, flame ionization, strain, etc.
 - Packaging a critical enabler
- Started with DOE-funded basic science SBIR 2003
- Aerospace (turbine engines)
 - Air Force, Navy, NASA funded
- Energy generation (gas turbines, coal gasification, nuclear, CSP, etc.)
 - DOE funded
- Prior work predominantly focused on <1400 °C application
- Current <u>DOE project</u> focusing on extending capabilities to 1800 °C

Motivation

- Higher turbine efficiencies achievable at higher combustion temperatures (≤1800 °C depending on fuel).
- Existing thermocouples (TCs) for combustor monitoring are expensive and short-lived
 - Practical only in design phase of turbine life-cycle.
- TCs used at turbine exhaust (lower temp) to infer combustor temperature -- limits efficiency
- Additional efficiency gains possible with dynamic pressure measurement.


Ultra-High Temperature SiCN Ceramics

- SiCN has shown excellent HT thermo-mechanical properties.
- Sporian existing polymer-derived ceramic (PDC) SiCN formulations can work safely under 1350 °C
- SiBCN is thermally stable up to 1800 °C

Selected Literature Review of SiBCN

Empirical Formula	Maximum Stable Temperature	Selected Reference from More than 100 Papers/Reviews
$\begin{array}{c} \text{Si}_{2.9} \text{B}_{1.0} \text{C}_{14.0} \text{N}_{2.9} \\ \text{Si}_{5.3} \text{B}_{1.0} \text{C}_{19.0} \text{N}_{3.4} \end{array}$	2200°C-30min	Wang and Riedel, 2001
Si _{3.0} B _{1.0} C _{4.3} N _{2.0}	~2000°C	Riedel, 1996
Si _{1.0} B _{1.0} C _{1.6} N _{2.4}	~1785°C	Wilfert and Jansen, 2012
Si _{1.0} B _{1.0} C _{1.7} N _{2.3}	~1700°C	Weinmann, 2008
Si _{2.0} B _{1.0} C _{3.4} N _{2.3}	~1600°C	Zhang, 2011
$Si_{1.0}B_{1.0}C_{2.0}N_{2.8}$	>1400°C	Tang, 2009

Weight Loss at High Temperatures (in UHP He)

Challenges:

- Synthesis of new precursors
- Viscosity control for workability/patternability
- UV cure capability to make useful devices
- Optimized pyrolysis processing
- Contamination and defect control for thermal stability

Prior, Related Work <1400 °C - PDCs Features, Advantages and Benefits

Features	Advantages	Benefits
Polymer-derived ceramic (PDC) materials	 Operating temperature >1000 °C w/o liquid cooling or fiber routing Pressures ≥1000 psia High oxidation/corrosion resistance Thermal shock resistance Low creep rate & diffusion rate 	 Lower weight, smaller size Lower cost, low-maintenance Higher durability Higher operational availability
Temperature / pressure sensor suite	 Improved T-compensation of pressure measurements Opportunity for redundancy and/or multi- sensor package 	Lower weight, smaller sizeHigher accuracy
Immersion sensing at source	 Eliminate stand-off tubes Avoid tube moisture collection 	 Lower cost, higher accuracy Reduced weight Improved dynamic response Reduced latency Avoid failure mechanism
Electronics-based	Compatible with existing controls & CBM	Lower cost

Prior, Related Work <1400 °C Performance

Specification	PIWG* Target	Achieved by Sporian
Pressure Range (psi)	25-750	Atm-1000
Operation Temperature (°C)	700-1350	25-1350
Natural Frequency	>100 kHz	TBD
Internally Compensated Temp. Range (°C)	700-1350	700-1350
Length (in)	1.25-3.00	1-10 (modifiable)
Diameter (in)	<0.25	0.25
Sensitivity/Combined Uncertainties	≤ 1% FS	≤ 1% FS
Power (VDC)	5-10	12 V (modifiable)

^{*}Propulsion Instrumentation Working Group

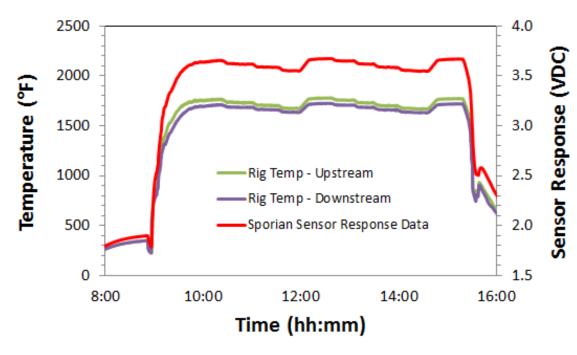
Prior, Related Work <1400 °C

Demonstrations (various projects)

Asset	Station	Hours *	Max T (°C)	Max P (psi)
Laboratory	N/A	-	1400	1000
Mult. OEM Burner Rigs	N/A	535	**	**
DOE Burner Rig	N/A	150	1000	30
Honeywell HTF 7000	P3	24	**	**
GE (NAVAIR) T700	P3	200	**	**
OEM Engine	P3, P4, P4.5	100	**	**

Asset	Туре	Hours *	Max T (°C)	Max P (psi)
Sandia Nitrate Salt Soak	Flow/P/T	500	300	N/A
UW Chloride Salt Soak	Flow/P/T	500	750	N/A
UW Nitrate Salt Soak	Flow/P/T	500	500	N/A
Skyfuel Molten Salt Loop	Flow/P/T	80	300	50
USGS: Neutron 10 ¹⁹ n/cm ²	various	N/A	N/A	N/A

^{*} Test durations dictated by budgets. All sensors were fully operational after test completion.


^{**} Proprietary

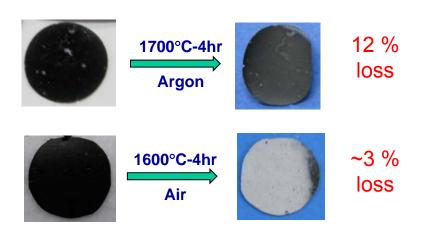
NETL Rig Testing Results

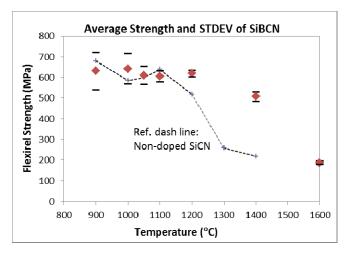
Aerothermal Rig

2014 Preliminary Results:

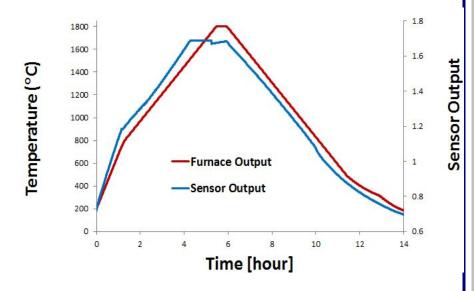
Testing date: 10/29, 11/5, 11/12/2014

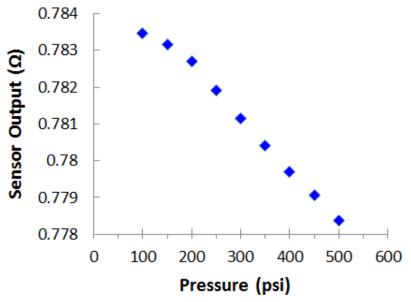
• 3x test cycles


Maximum T: 1100 °C


Total duration: 30 hours

Stable response and performance




Phase II In Brief

- Developed sensors and packaging capable of 1800 °C operation
- Conducted pressure response testing on 1600 °C-capable probe

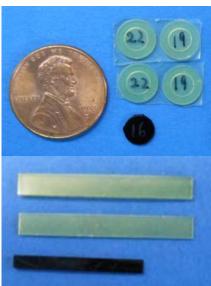
Current Effort Progress Update

- Extend Sporian's Existing Ceramic Sensors and Packaging Technology to Ultra-high Temperatures (UHT): 1600-1800°C
- Build on PII tasks for sensors, packaging, electronics to push capabilities to 1800 °C
- 1. Work with OEMs to guide the design and development of UHT sensor technology: Commercialization and transition efforts.
- 2. Continue optimizing PDC precursor formulation and device fabrication to further extend capability to 1800 °C
- 3. Develop improved UHT P/T sensors, packaging, and drive/conditioning electronics
- 4. Rigorous lab-scale testing of optimized sensors/packaging to promote post Phase IIA transition, **emphasize reliability assessment**
- 5. Revise sensor suite designs based on test results, construct next generation prototypes, and demonstrate a full prototype sensor in stakeholder test systems

OEM Collaboration/Coordination

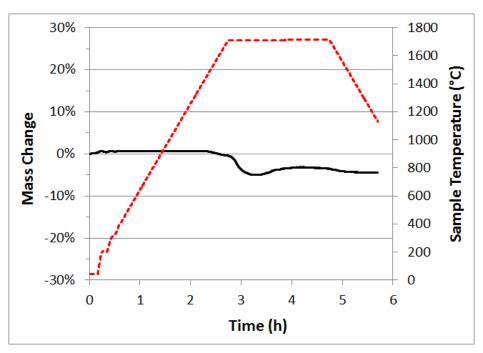
- Strong interest, requirements, and some in-kind support from:
 - Turbine OEMs
 - Controls/CBM OEMs
 - Industry Research Institutions & Consortia

- Academic Institutions
- Established sensor OEMs


Synthesis, Evaluation of Fully Dense SiBCN

- Synthesized boron-doped polysilazane with good workability/stability
- Incorporated UV-curability to polyborosilazane precursors
- Achieved dense SiBCN ceramic materials and defect-free parts

UV-Curable Precursor and Fired SiBCN



B-doped Polymer and SiBCN Sensor and Coupons

Thermogravimetric Analysis of SiBCN

2 h at 1700 °C in air: ~ 5 % loss

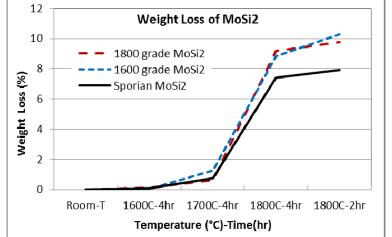
- Sensor-ready material
- In line with best-case literature (powders)

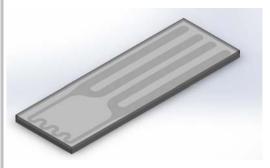
Sporian SiBCN in Phase IIA


- B-doped composition focus optimize precursor process, green part fabrication and handling, and fullydense part and device processing
- Increase thermal stability in application-relevant environments
- Evaluate mechanical and chemical properties at increased temperatures
- Incorporate into sensor packaging for 1800 °C temperature and 1600 °C pressure sensor suites

Ultra-High Temp MoSi₂-based Sensors

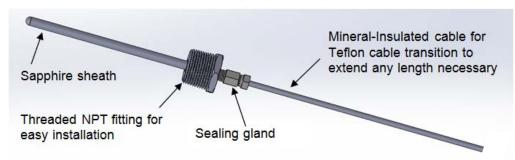
Sporian Sensor Materials, Prototypes:


- Re-shapeable and stackable green tape, thick film inks as well
- Micro-fabrication and laser machinability
- High density (98 %) and high strength (351 MPa)
- Thermal stability and oxidation resistance at 1800 °C
- Comparable to the commercially available UHT grade (heater elements)
- Compatible CTE with alumina substrates and tapes



Sintered Structures and Packaged MoSi₂ Temp Sensor Element

Embedded MoSi2 RTD Temp Sensor – design and results


Challenges:

- Thermal stability
- Optimizing embedding layers for sensor efficiency, accuracy
- Interconnects to sensor electronics

Current Prototype 1800 °C Temperature Sensor (Designed for NETL Rig Testing)

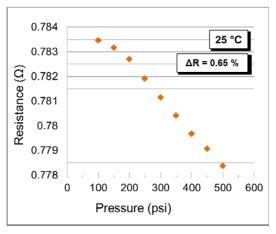
Sporian Sensor Packaging Design and Probe Assembly

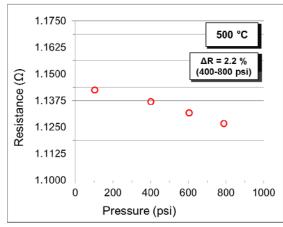
'Smart' Signal Conditioning Electronics

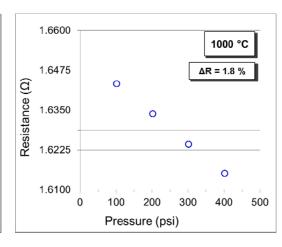
Features:

- Sapphire-sheathed UHT sensor packaging.
- Probe suitable for high pressures, high temperatures and particulate exposure.
- "Smart" signal conditioning electronics can drive the sensor over its entire operational range and measure the response.

19

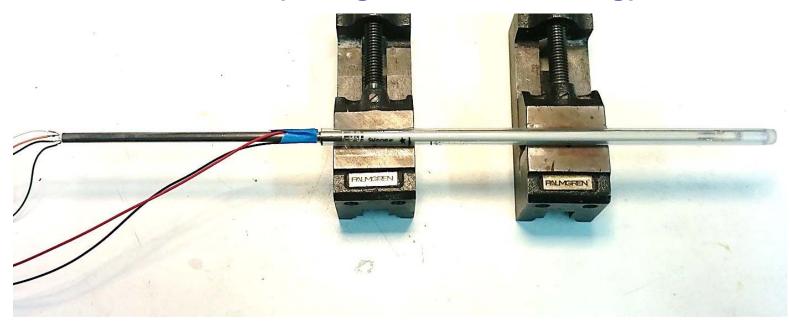

HT Testing of Sporian Prototypes




Test under Pressure at Temp:

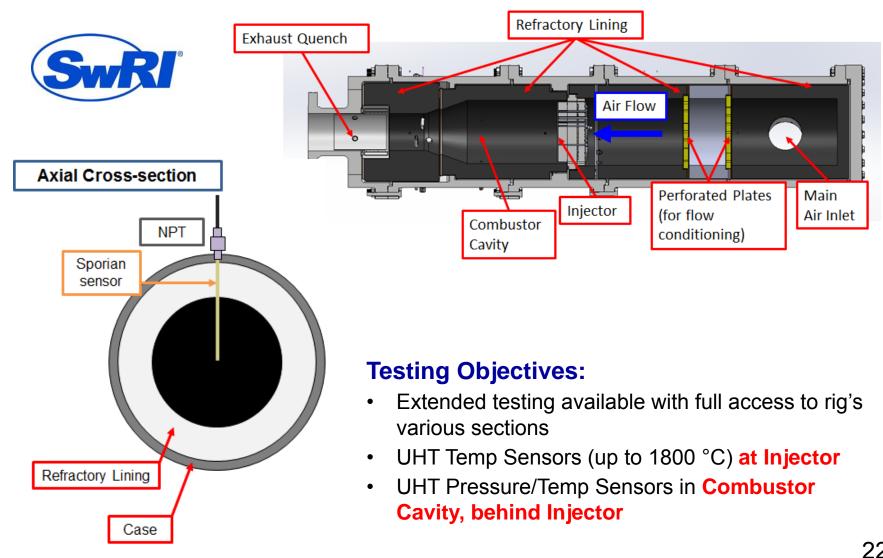
- Exterior reference TC to track temperature
- 25, 500, and 1000 °C
- 15 800 psi
- Sensor response increased with increasing pressure
- Sensor and package stable, no degradation

Sporian In-House Pressure Test



Current HT Stability Testing

(Designed for SwRI Rig)


HT Test in-house:

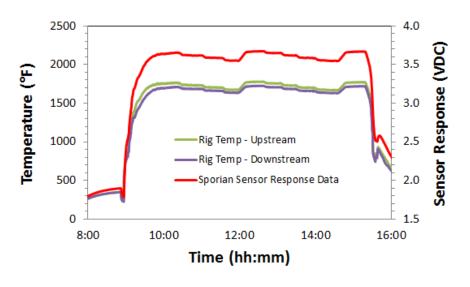
- Heated to 1800 °C in air
- 1 h hold
- Element and *in-situ* TC stable post-test
- Packaging stable no cracking, warping, or degradation

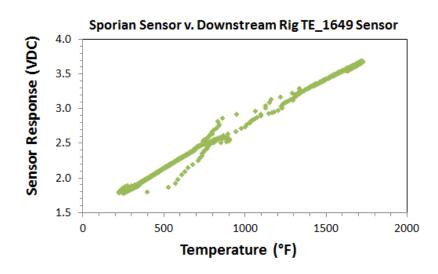
SwRI PHTFF Rig Testing – Upcoming in PIIA

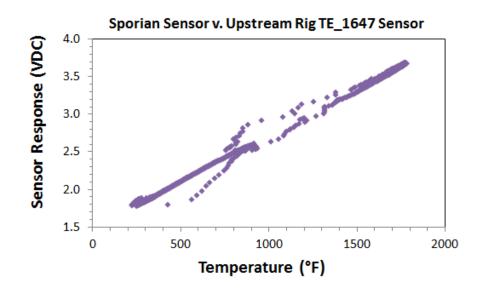
Pressurized High-Temperature Flow Facility (PHTFF)

Summary

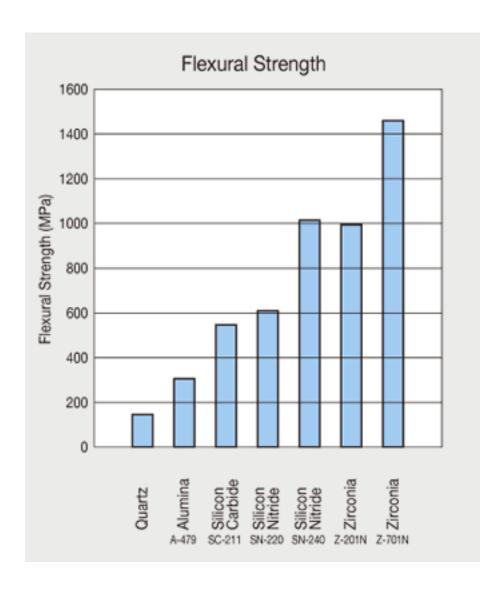
- Optimizing UV-curable/patternable PDC precursor materials and processing
- 2. Enhancing thermal, mechanical, and chemical stability of PDC materials and alternatives (MoSi₂) in sensor prototypes
- 3. UHT packaging temperature probes survived 1800 °C in lab and 1100 °C 30 h NETL Aerothermal Rig Test
- 4. Preparing for extended testing in SwRI PHTFF rig to evaluate 1800 °C temp sensors and 1600 °C pressure sensors


Thank you for your attention!


Questions?


www.sporian.com

NETL Aerothermal Rig Testing Results



25

