Ceramic High Temperature Thermoelectric Heat Exchanger and Heat Recuperators for Power Generation Systems

Xueyan Song

Department of Mechanical and Aerospace Engineering West Virginia University

National Energy Technology Laboratory DOE Award – FE0024009

Program Manager: Richard J. Dunst

<u>Overview</u>

Background

- High grade waste heat & advantages of Thermoelectric (TE) generator
- State-of-the-art TE device and materials
- Obstacles of oxide TE materials and device for high temperature applications

Project objectives and routine lab work flow

- Project objectives
- Materials processing, property measurement & nanostructure characterization

Highlight of current results from Pl's group

- Available p-type TE Oxide that over performed SiGe at 800°C.
- Ongoing work of n-type TE oxide with record high electrical performance
- Novel scalable all oxide TE generator with compact design

Summary and future work

<u>Overview</u>

Background

- High grade waste heat & advantages of Thermoelectric (TE) generator
- State-of-the-art TE device and materials
- Obstacles of oxide TE materials and device for high temperature applications

Project objectives and routine lab work flow

- Project objectives
- Materials processing, property measurement & nanostructure characterization
- > Highlight of current results from Pl's group
 - Available p-type TE Oxide that over performed SiGe at 800°C.
 - Ongoing work of n-type TE oxide with record high electrical performance
 - Novel scalable all oxide TE generator with compact design

Summary and future work

Background: Waste heat & advantages of TE generator

Industry power plants, factories, automobiles, and even portable generators generate enormous amounts of heat that is unproductively released into the environment.

Thermoelectric (TE) materials and devices: converting temperature differences into electrical power.

Thermoelectric Uni-couple

NPG Asia Mater. 2(4) 152 (2010)

Thermoelectric Module

Nature Materials 7, 105 114 (2008)

Advantages of TE generators

✓ No moving parts, silent.

(unlike gas turbine engines).

- Maintenance-free operation.
 (without chemical reactions compared to fuel cells).
- ✓ Long life capability.
- Function over a wide temperature range.
- ✓ Position independent.
- ✓ Environmental friendliness.

Background: Waste heat & advantages of TE generator

Thermoelectric materials and devices: converting temperature differences into electrical power.

Thermoelectric module charging a phone

MRS Bull. 31 (2006) 188

Thermoelectric Uni-couple

NPG Asia Mater. 2(4) 152 (2010)

Thermoelectric Module

Nature Materials 7, 105 114 (2008)

Background: State-of-the-art TE device and materials & obstacles for high temperature applications

High temperature power generation systems -Solid Oxide Fuel Cells (SOFCs):

- SOFCs operate in the 650-800°C temperature range and produce a large amount of exhaust heat
- High temperature exhaust gas streams leaving the SOFC stack have a temperature around 600°C.

Waste heat, operating temperature of thermoelectric materials.

Journal of the Ceramic Society of Japan 119 [11], 770-775, 2011

State-of-the-art thermoelectric materialsheavy-metal-based materials

- Skutterudite La_{0.9}Fe₃CoSb₁₂
- Half-Heusler alloys
- Clathrates
- Antimonides Zn₄Sb₃

Heavy-metal-based materials: energy conversion efficiency high enough for practical applications. However, they are NOT good for operating at high temperatures range due to:

- decomposition; vaporization and/or melting ; and
- scarce, toxic, environmentally harmful.
- Require vacuum seal for the devices- high cost.

CaMnO₃, Ca₃Co₄O₉ High temperature waste heat recovery

Background: Thermoelectric Oxide & its potential application in SOFCs

Solid Oxide Fuel Cells (SOFCs)

DOI: 10.1007/978-1-4614-1957-0 2

High Temperature Waste Heat in SOFCs:

- SOFCs operate in the 650-800°C temperature & produce a large amount of exhaust heat.
- High temperature exhaust gas streams leaving the SOFC stack have a temperature ~300-600°C.

Phys. Rev. B 85, 214120

n type **Oxide CaMnO**₃ Journal of the Ceramic Society of Japan 119, [11], 770-775, 2011

p type Oxide Ca₃Co₄O₉

Oxide $Ca_3Co_4O_9$ & CaMnO₃, are particularly promising for high temperature applications

- Low cost, and light weight.
- High thermal stability in air up to 980°C.
- Non toxic.

Challenge for oxide application of high temperature waste heat recovery:

- **Device level:** Need better design of the all oxide TE generators.
- **Materials Level:** Need to enhance energy conversion efficiency of polycrystalline oxide.

Background: Device Level Challenges for Oxide TE Generators

Literatures: TE materials & maximum output power P_{max} for oxide module, Japanese JAP v.49 (2010) 071101]

	GPR-device	Lemonnire et al.	Shin et al.	Reddy et al.
Number of couples	1	2	1	2
P-type leg	Ca _{2.7} B _{<i>i</i>0.3} Co ₄ O ₉		Li-doped NiO	Ca ₃ Co ₄ O ₉
N-type leg	Ca _{0.9} Yb _{0.1} MnO ₃	Ca _{0.95} Sm _{0.05} MnO ₃	(Ba,Sr)PbO ₃	Ca _{0.95} Sm _{0.05} MnO ₃
Dimensions of the legs (cross-sectional area) × height	$(3.5 \times 3.5) \times 5 \mathrm{mm^3}$	$(4.7 \times 3.9) \times 6.5 \text{ mm}^3$	$(4 \times 3) \times 20 \text{mm}^3$	$(4 \times 4) \times 10 \text{mm}^3$
Maximum power (W)	0.14	0.016	0.008	0.032
Temperature difference (K)	705	360	552	925
Maximum power density (W cm ⁻²)	0.57	0.02	0.03	0.05

Critical issues for the conventional devices (adapted from modules for metals):

- Difficulty of selection of interconnect materials.
- Interfaces and the contact resistance: Open circuit voltage from modules ~only 54% of theoretical value, loss from interfaces & contact resistance.
- Adiabatic blocks are essential to maintain the temperature difference between hot and the cold sides of the module. Back-filling some blocking materials is needed.
- Large size (caused by the π shaped) and heavy in weight (large amount interconnect metals).

Background: Materials Level Challenges for Oxide TE Generators

$$LI = \frac{1}{(\kappa_e + \kappa_L)} \cdot I$$

- S: absolute Seebeck coefficient $\Delta V / \Delta T$
- σ: Electrical conductivity (1/ρ)
- **ρ: Electrical resistivity**
- **σS²: Power Factor**
- $(\kappa_{e} + \kappa_{L})$: Total thermal conductivity

Michitaka Ohtaki, J. Ceramic Society of Japan 119, 770 2011

Challenge for thermoelectric Oxide CaMnO₃ and Ca₃Co₄O₉

• Enhance the performance of polycrystalline materials for applications in large scale

Possible routes of improving the performance:

- Lower the thermal conductivity of $(\kappa_e + \kappa_l)$
- Increase the electrical transport power factor of $\sigma S^2_{,}$ by increasing the S, and decrease ρ

Background: Materials Level Challenges for Oxide TE Generators

The conversion efficiency: the dimensionless figure-of-merit ZT. For practical application, $ZT \sim 1$.

$$ZT = \frac{\sigma S^2}{(\kappa_e + \kappa_L)} \cdot T$$

S or α : absolute Seebeck coefficient $\Delta V/\Delta T$ $\alpha = \frac{8\pi^2 k_B^2}{3eh^2} m^* T \left(\frac{\pi}{3n}\right)^{2/3}$ n: carrier concentration; m*: effective mass

Carrier concentration *n* increase will **increase the electrical conductivity** σ & **decrease the Seebeck coefficient**. Ideal for increasing the power factor: **Decrease the carrier concentration** (increase S) & **increase the carrier mobility** (increase σ).

Difficulty in Increase the electrical transport power factor of σS^2 .

Background

- High grade waste heat & advantages of Thermoelectric (TE) generator
- State-of-the-art TE device and materials
- Obstacles of oxide TE materials and device for high temperature applications

Project objectives and routine lab work flow

- Project objectives
- Materials processing, property measurement & nanostructure characterization

> Highlight of current results from Pl's group

- Available p-type TE Oxide that over performed SiGe at 800°C.
- Ongoing work of n-type TE oxide with record high electrical performance
- Novel scalable all oxide TE generator with compact design

Summary and future work

Project Objectives

Objective: develop all-oxide TE generators, which will be highly efficient, cheaply produced, compact/small, lightweight, non-toxic, and highly stable in air at high temperatures, for recovering the waste heat from power systems including SOFCs at temperatures of up to 980°C in air.

Novel device configurations will be developed using mature, inexpensive, easily scalable manufacturing techniques.

In comparison with *commercially* available TE generators (TEGs) that are mostly working in the low temperature regime of *up to 300*°C or so, the proposed generators are targeted for *medium to high temperature up to 980*°C *in air*, at which the commercially conventional TE device will not perform. In addition, since the generators are ceramic, they can be integrated into ceramic heat exchangers without needing sealing between the TEG and the heat exchanger.

Approaches:

- Materials level: Improve oxides performance through nanostructure engineering.
- Device level: Novel device with compact design, low cost, and scale up ready.

Lab for Thermoelectric Materials & Device

- Linseis LSR-1100, Seebeck and Electrical Resistivity, from 25°C to 1100°C.
- Linseis LFA-1200, Laser Flash Analyzer, Thermal conductivity, from 25°C to 1250°C.

Routine work flow: Synthesis, Measurement and Characterization

Polycrystalline Ca₃Co₄O₉ or CaMnO₃ Pellets

Sol-gel chemical route, calcinations, pressing and sintering.
 Thermoelectric properties measurement

- Seebeck coefficient, electrical resistivity: Linseis LSR-1100.
- Thermal-conductivity: Linseis LFA-1200.

Nanostructure & chemistry characterization

Transmission Electron Microscopy.

Every step in the processing matters

Pure baseline pellets, keys:

- Chemistry & mixing of sol-gel
- Ashing and ball-milling time
- Calcination gas and temperature
- Pressing pressure and temperature
- Sintering gas and temperature

Powder Processing and Sintering of Pellets

Background

- High grade waste heat & advantages of Thermoelectric (TE) generator
- State-of-the-art TE device and materials
- Obstacles of oxide TE materials and device for high temperature applications
- Project objectives and routine lab work flow
 - Project objectives
 - Materials processing, property measurement & nanostructure characterization

Highlight of current results from Pl's group

- Available p-type TE Oxide that over performed SiGe at 800°C.
- Ongoing work of n-type TE oxide with record high electrical performance
- Novel scalable all oxide TE generator with compact design

Summary and future work

Current Work: All Oxide TE Generators

High Temperature Waste Heat in the Power Generation Systems such as SOFCs:

- SOFCs operate in the 650-800°C temperature & produce a large amount of exhaust heat.
- High temperature exhaust gas streams leaving the SOFC stack have a temperature ~ 300-600°C.

Approaches of improving the materials performance:

- p-type: Available polycrystal bulk scale Ca₃Co₄O₉ that outperform SiGe at 800°C.
- **n-type:** Improve the performance of polycrystal bulk scale CaMnO₃.

<u>Available p-type oxide:</u>

Bulk scale polycrystal Ca₃Co₄O₉

✓ Simultaneously Increase Seebeck
 Coefficient S and Electrical Conductivity σ.

✓ Increase the ZT to 0.52 at 800°C

By dopants Ba grain boundary segregation.

$$ZT = \frac{\sigma S^2}{(\kappa_e + \kappa_L)} \cdot T$$

- S: absolute Seebeck coefficient $\Delta V / \Delta T$
- σ : Electrical conductivity (1/ρ)
- ρ : Electrical resistivity
- σS^2 : Power Factor
- $(\kappa_{e} + \kappa_{L})$: Total thermal conductivity

Ba segregation to the Grain Boundaries of Ca₃Co₄O₉

Previous results from pulsed laser deposition (PLD) film Ca₃Co₄O₉ with addition of BaZrO₃

- Thin film (200 nm) is with vertical grain boundaries, and lamella secondary phase.
- Secondary phase is lamella, coherent with Ca₃Co₄O₉ with the thickness of 1-4 nm.
- The secondary phase is indexed as Co_{1-x}Ca_xO. Zr is uniformly distributed over both phases.
- Ba segregated into the grain boundaries and the secondary phases.

Non-stoichiometric addition: $Ca_3Co_4Ba_xO_9$ (x: 0, 0.01, 0.05, 0.07, 0.1)

Seebeck coefficient largely increase, large decrease in carrier concentration; at Ba of X=0.05; Resistivity decrease, Metal-semiconductor transition ~200°C; increase in carrier mobility.

Thermal conductivity decrease as the Ba level increase.

p-type

Ca₃Co₄O₉

At optimum Ba addition, the peaking ZT of $Ca_3Ba_{0.05}Co_4O_9$ is 0.52.

Non-stoichiometric addition: $Ca_3Co_4Ba_xO_9$ (x: 0, 0.01, 0.05, 0.07, 0.1)

Seebeck coefficient largely increase, large decrease in carrier concentration; at Ba of X=0.05; Resistivity decrease, Metal-semiconductor transition ~200°C; increase in carrier mobility.

• SEM images of the fractured surface of the pellets.

p-type

Ca₃Co₄O₉

• Significant crystal texture improves with the Ba addition up to Ba 0.05.

Grain Boundary Ba Segregation in Ca₃Co₄Ba_xO₉

Nanostructure of pellets with Ba substitution $Ca_3Ba_xCo_4O_9$ (X=0.05).

- Nano-lamella is with the thickness of 5-50 nm.
- Grain boundaries are free of secondary crystal phases.
- Ba segregated to the grain boundary and no solution in the crystal grains.

Inorganic Chemistry, 54 (18), 9027–9032, 2015

Highlights of results on p-type bulk scale $Ca_3Co_4O_9$:

- In the polycrystal Ca₃Co₄O₉ that is with strong anisotropy and requires crystal texture to achieve high performance, first time demonstration showing that Ba segregation at the GBs:
- ✓ Conventional chemical sol-gel route, pressing and sintering.
- ✓ Enhance electrical conductivity; Increase the Seebeck coefficients.
- ✓ Highest Seebck coefficient (165µv/k) at room temperature and high ZT (0.52) at 800 C, approached that of p type of Si-Ge, was achieved for sample with minute amount of doping Ba.

Publications in engineering the grain boundaries of thermoelectric $Ca_3Co_4O_9$:

- Thermoelectric Performance of Calcium Cobaltite through Barium Grain Boundary Segregation, Inorganic Chemistry, 2015, DOI: 10.1021/acs.inorgchem.5b01296
- Phase Evolution and Thermoelectric Performance of Calcium Cobaltite upon High Temperature Aging, Ceramics International 2015. DOI information: 10.1016/j.ceramint.2015.05.052
- Grain Boundary Segregation and Thermoelectric Performance Enhancement of Bismuth Doped Calcium Cobaltite, Journal of European Ceramic Society, 2015.
- Selective Doping the Lattice and Grain Boundaries and Synergetic Tuning the Seebeck Coefficient and Electrical Conductivity of Calcium Cobaltite Ceramics, (to be submitted).
- Nanostructure Origin of Thermoelectric Performance Enhancement of Calcium Cobaltite with Bi nonstoichiometric addition, (to be submitted).
- > Evidence of High Thermal Stability of Ca3Co4O9 Ceramics At the Temperatures Up to 980°C, (to be submitted).
- Significant Enhancement of Electrical Transport Properties of Thermoelectric Ca3Co4O9+d through Yb Doping, Solid State Communications 152 (2012) 1509–1512.
- Effect of precursor calcination temperature on the microstructure and thermoelectric properties of Ca3Co4O9 ceramics, J Sol-Gel Sci Technol, DOI 10.1007/s10971-012-2894-4, 64:627–636, 2012.

Background

- High grade waste heat & advantages of Thermoelectric (TE) generator
- State-of-the-art TE device and materials
- Obstacles of oxide TE materials and device for high temperature applications
- Project objectives and routine lab work flow
 - Project objectives
 - Materials processing, property measurement & nanostructure characterization

Highlight of current results from Pl's group

- Available p-type TE Oxide that over performed SiGe at 800°C.
- Ongoing work of n-type TE oxide with record high electrical performance
- Novel scalable all oxide TE generator with compact design

Summary and future work

Main issues for the performance of n-type CaMnO₃

• ZT < 0.3.

• Thermal conductivity: low k ~ 1-2 Wm⁻¹K⁻¹.

Main issues:

- High electrical resistivity
- Low Seebeck coefficient
 - < 150 50 $\mu V K^{\mbox{--}1}$.
- Low power factor

< 0.4 mWm⁻¹K⁻².

ZT of < 0.3 in literatures for pure & doped $CaMnO_3$.

Improving thermoelectric performance of n type CaMnO₃

• ZT < 0.3.

Thermal conductivity:

low k ~ 1-2 Wm⁻¹K⁻¹ .

Main issues:

- High electrical resistivity
- Low Seebeck coefficient

< 150 - 50 $\mu V K^{\text{--}1}$.

- Low power factor
 - < 0.4 mWm⁻¹K⁻².

Current work of nanostructure engineering:

Increase the electrical power factor Polycrystal CaMnO₃

- ✓ Cation doping within the lattice
 - Bi substitution and addition:
 - Ce substitution
 - La substitution
 - Sr substitution
- ✓ Grain boundary 2nd phase of MO_x:
 - Bi substitution and dopant M addition
 - M secondary phase formation at the GBs

Outcome of nanostructure engineering CaMnO₃

Of Ca_{0.97}Bi_{0.03}MnM_{0.04}O₃: (M-dopant used in this project)

- ✓ Low resistivity
- ✓ High Seebeck coefficient
- ✓ High electrical power factor
- ✓ Record high power factor 0.87 mWm⁻¹K⁻²:

(factor of ~2 of that highest value currently reported in the literatures).

Significantly reduced electric resistivity with the increase of the Bi doping level.

Seebeck coefficient decreases with the increase of the Bi-doping level.

Significant increase of the power factor, as the Bi doping increase to 0.03, in Ca_{0.97}Bi_{0.03}MnO₃.

Bi Substitution & M non-stoichiometric addition:

Temperature (K)

Based on Ca_{0.97}Bi_{0.03}MnO₃,

Further enhancement using $Ca_{0.97}Bi_{0.03}MnM_{x}O_{3}$.

- Further reduced resistivity as dopant M increased to x=0.04.
- Further increased Seebeck coefficient as the dopant M increased to x=0.04.
- Significantly higher power factor of 0.87 mWm⁻¹K⁻².
- Record high power factor currently. (factor of ~2 of that currently reported in the literatures).

n type CaMnO₃

Microstructure Changes induced by Bi and M doping

Bi doping:

- No morphology & size changes.
- Nano defects changes.

M- addition:

- Increased grain size.
- Formation of grain boundary secondary phases.
- Grain boundary secondary phase is M oxide.

n type CaMnO₃

Crystal Defects Changes induced by Bi doping

Background

- High grade waste heat & advantages of Thermoelectric (TE) generator
- State-of-the-art TE device and materials
- Obstacles of oxide TE materials and device for high temperature applications
- Project objectives and routine lab work flow
 - Project objectives
 - Materials processing, property measurement & nanostructure characterization

Highlight of current results from Pl's group

- Available p-type TE Oxide that over performed SiGe at 800°C.
- Ongoing work of n-type TE oxide with record high electrical performance
- Novel scalable all oxide TE generator with compact design

Summary and future work

Current work on TE devices

Conventional design (π shaped adopted from that for metals) of the TE unit couple and modules.

Current work: All oxide thermoelectric generators with increased power density:

Newly designed TE device for oxide by Pls.

- All oxide ceramic.
- Incorporation of high performance p-type oxide.
- Incorporation of high performance n-type oxide.
- \bullet Operation in the high temperature up to 980°C
- Operation directly in the air.

Newly designed devices for oxides features:

- Compact integrated design.
- Minimal-sized, closely-packed insulating for better thermal management and reduction of the overall-size and weight of the device.
- Minimal sized electrical interconnection.
- Significantly reduced size and weight of the entire device.
- Easy to fabricate in anticipation of mass production, with a high potential for use in large-scale applications.

Oxide Thermoelectric Generator with Compact Design

Hot plate	T _h	Т _с	ΔΤ
510 °C	498°C	127°C	371°C
400°C	400°C	92°C	308°C
300°C	310°C	53°C	257°C

Undoped: CaMnO₃ & Ca₃Co₄O₉

Doped: Ca_{0.97}Bi_{0.03}MnM_{0.04}O₃ & Ca₃Co₄Ba_{0.05}O₉

Unicouple: Effect of Materials Optimization

- Optimization of materials results in > 400 times performance enhancement for the unicouple.
- Without device level optimization, at $T_h=510^{\circ}C$, unicouple power density P is ~0.02 w/cm².
- Un-optimized unicouple (~50% of weight of SOFC button) performance at 500°C in air is
 - ~10% of SOFC operated at 750°C fuel with H₂.

Solid Oxide Fuel Cell Button cell weight of ~2.3 g

750°C /48 h	i (A/cm²)	P (W/cm ²)
at 0.8 V	0.315	0.252

Oxide Thermoelectric Generator with Compact Design

Hot plate	T _h	Т _с	ΔΤ
510 °C	498°C	127°C	371°C
400°C	400°C	92°C	308°C
300°C	310°C	53°C	257°C

• Power density increased ~4 times as T_h raises from 400°C to 510°C. Higher T_h , better performance.

Performance could be much improved.Unicouple: Effect of Materials Optimization

- Optimization of materials results in > 400 times performance enhancement for the unicouple.
- Without device level optimization, at $T_h=510^{\circ}C$, unicouple power density P is ~0.02 w/cm².
- Un-optimized unicouple (~50% of weight of SOFC button) performance at 500°C in air is
 - ~10% of SOFC operated at 750°C fuel with H₂.

Solid Oxide Fuel Cell Button cell weight of ~2.3 g

750°C /48 h	i (A/cm ²)	P (W/cm ²)
at 0.8 V	0.315	0.252

Oxide Thermoelectric Generator with Compact Design

Further optimization of Generator:

- Further improved the materials performance.
- Change Leg dimensions.
- Optimize electrical connection.
- Control temperature difference.
- Fabricate Module (small scale ~10 unicouples).

Unicouple: Effect of Materials Optimization

- Optimization of materials results in > 400 times performance enhancement for the unicouple.
- Without device level optimization, at $T_h=510^{\circ}C$, unicouple power density P is ~0.02 w/cm².
- Un-optimized unicouple (~50% of weight of SOFC button) performance at 500°C in air is
 - ~10% of SOFC operated at 750°C fuel with H₂.

Solid Oxide Fuel Cell Button cell weight of ~2.3 g

750°C /48 h	i (A/cm²)	P (W/cm ²)
at 0.8 V	0.315	0.252

Background

- High grade waste heat & advantages of Thermoelectric (TE) generator
- State-of-the-art TE device and materials
- Obstacles of oxide TE materials and device for high temperature applications
- Project objectives and routine lab work flow
 - Project objectives
 - Materials processing, property measurement & nanostructure characterization
- > Highlight of current results from Pl's group
 - Available p-type TE Oxide that over performed SiGe at 800°C.
 - Ongoing work of n-type TE oxide with record high electrical performance
 - Novel scalable all oxide TE generator with compact design

Summary and future work

Summary and Future Plans

Materials development of n-type CaMnO₃:

- For polycrystal CaMnO₃ that is stable at temperature of 1300°C and stable in air, electrical performance could be significantly improved:
 - Through the nanostructure engineering of dopants stoichiometric substitution and grain boundary secondary phase formation.
 - ✓ In the case of Bi and M co-doping:
 - Bi in the lattices; dopant M mostly segregated at the grain boundaries.
 - Systematic nanostructure changes induced by Bi doping
 - Dramatic electrical performance enhancement.
 - Record high (factor of ~2 of that highest value currently reported in the literatures) electrical power factor for polycrystal CaMnO₃

Novel device of all oxide thermoelectric generator:

- ✓ All oxide thermoelectric generator.
 - Compact design, significantly reduced size, weight, easy scale-up.
 - Operation in the high temperature up to 980°C in air directly.
 - Unicouple performance increased by a factor of 400 by materials performance enhancement.
 - Non-optimized unicouple (with the ~50% weight of SOFC button cell) operated at 500°C is with the 10% power density of SOFC button cell operated at 750°C with H₂.
 - Unicouple performance could be much further improved.

Summary and Future Plans

Future work:

- \succ Continuing working on the performance improvement of n-type CaMnO₃ ceramics.
- > Optimization of the uni-couple geometry and controlling temperature difference.
- > Fabrication of thermoelectric module.
- Integration of the thermoelectric modules into the power generation systems.

Publications on n-type CaMnO₃ thermoelectric materials & device:

- Significant Electrical Performance Enhancement of Thermoeletric CaMnO₃ Ceramics Induced by Synergetic Cation Substitution and Cation Addition. (Ready for submission).
- Effect of Grain Boundary Secondary Phase on the Thermoelectric Performance of CaMnO₃ Ceramics. (Ready for submission).
- Systematic Thermoelectric Performance Improvements of CaMnO₃ Through Bi doping. (In preparation).
- Operation dependence of Performance and Nanostructure of CaMnO₃ ceramics. (In preparation).
- Compact all oxide thermoelectric devices for high temperature power generation. (In preparation).

<u>Acknowledgement</u>

National Energy Technology Laboratory DOE Award – FE0024009

Program Manager: Richard J. Dunst