MFIX-DEM Enhancement for Industrially-Relevant Flows

Project Leads:

Dr. Ray Cocco (PSRI, co-PI) Dr. Ray Grout (NREL, co-PI) Prof. Thomas Hauser (Univ. CO, co-PI) Prof. Christine Hrenya (Univ. CO, PI)

Research Computing @ CU-Boulder

4/21/16

Project Objectives

- Task 1 Project Management and Planning
- Task 2 Profiling MFIX DEM
 - Task 2a: Benchmark serial MFIX DEM Task 2b: Benchmark parallelized MFIX DEM
- Task 3 Determine Optimization Frameworks
- Task 4 Perform optimization and vectorization of serial DEM
 - Task 4a: Employ optimization techniques
 - Task 4b: Verify enhanced DEM code for numerical correctness
- Task 5 Optimize and enhance hybrid (MPI + accelerator) DEM
 - Task 5a: Implement hybrid parallelization method (MPI + OpenMP) Task 5b: Use extensive parallel profiling to optimize parallel code Task 5c: Compare enhancements on multiple Xeon/Xeon Phi architectures
- Task 6 Industrially Relevant Problem
 Task 6a: Survey of PSRI member companies
 Task 6b: Experiments of Interacting Nozzles
- Task 7 Uncertainty Quantification
 - Task 7a: Test Problem Task 7b: Challenge Problem Task 7c: Industrially Relevant Problem

Project Team

University of Colorado Chemical & Biological Engineering

DEM modeling of grnanlar and gas-solid flows, MFIX

Prof. Christine Hrenya

Dr. William Fullmer

University of Colorado Research Computing

High-performance computing, CFD

Dr. Peiyuan Liu

PSRI Industrial Application and Experiments of Particle Flows

Dr. Allan Issangya

Prof. Thomas Hauser

Tim Brown

NREL **Computational Science** High-performance computing, CFD

Dr. Ray Grout

Dr. Hari Sitaraman

4/21/16

Technical Background

Continuum or "Two-fluid Model" (TFM)

Gas = continuum

(averaged over many particles)

Solids = continuum

 $\frac{\partial}{\partial t} \left(\mathcal{E}_{s} \rho_{s} \mathbf{V}_{s} \right) + \nabla \cdot \left(\mathcal{E}_{s} \rho_{s} \mathbf{V}_{s} \mathbf{V}_{s} \right) = \nabla \cdot \mathbf{\tau}_{s} + \mathcal{E}_{s} \rho_{s} \mathbf{g} + \mathbf{F}_{drag}$

Discrete Element Method (DEM)

- Gas = continuum Solids = discrete $m_i \frac{d\mathbf{V}_{si}}{dt} = m_i \mathbf{g} + \mathbf{F}_{ci} + \mathbf{F}_{drag,i}$

Typical CPU times for DEM $O(10^5 \text{ particles})$ Serial processor: Parallel processors: $O(10^8 \text{ particles})$

d_p	N_p in 1 cup
100 µm (sand)	$O(10^8)$ particles
50 μm	$O(10^{10})$ particles

Significance of the Results of the Work

- Expanded industrial use of DEM
- Indirect: Improved physics in continuum and hybrid modeling (DEM as benchmark data)
- Direct: Aid in design/optimization of industrial systems

System-size independent measurements:

Fully-developed characteristics:

Heat transferred to particles falling over heated tubes (Morris et al., *Solar Energy*, submitted)

Survey to Assess Industry Needs

- PSRI initiated
- 18 companies responded
- Interest in DEM applied to
 - Bin/hopper discharge
 - Large valve systems
 - Drug deliver through inhaler device
 - Reacting fluidized bed systems
 - Die filling of non-spherical particles
 - Gas distributers, transfer lines
 - Standpipe flow

Sector Served / Size

4/21/16

CFD/DEM Modeling

Criteria for Choosing DEM software

Usage and Training

DEM Physics Enhancements

Computational Improvements

Improvements for more widespread use

How long should DEM simulations run to add value?

Computational Project Goals

- Improve the computational performance of MFIX-DEM
 - Create a set of benchmarks to guide optimization work
 - Profile benchmarks
 - Improve serial performance of select subroutines by a factor of 2
 - Vectorization
 - Optimization of memory access
 - Improve parallel performance of MFIX-DEM
 - Hybrid OpenMP + MPI parallelization
- Demonstrate performance enhancements through DEM simulation with O(10⁸) particles
- Explore algorithmic changes

Preliminary results: comparison of CPU time normalized by MFIX CPU time based on serial DEM simulations of homogeneous cooling systems (HCS) and settling particles.

Computer Architecture 101

Stampede Supercomputer

Stampede has 6,400 nodes [3] 56 GB/s FDR Infiniband interconnect

Socket:

- 2.7 GHz
- 8 Cores
- 8 DP FP operations per clock cycle
- 64 GB L1 Cache/core
- Vector width: 4 double precision items

Stampede compute node [3]:

- 2 Sockets per Node →
 2 Xeon E5 processors
- 1 Xeon Phi coprocessor
- 32 GB Memory
- 250 GB Disk

Parallelism at All Levels

- Parallelism across multiple nodes or processors
- Parallelism across threads
- Parallelism across instructions
- Parallelism on data SIMD (Single Instruction Multiple Data)

Floating Point Performance

- $P = n_{\rm core} * F * S * \nu$
- Example: Intel Xeon E5 on Stampede
 - Number of cores: 8 $n_{\rm core}$
 - FP instructions per cycle: 2 (1 Multiply and 1 add)
 - FP operations / instruction (SIMD): 4 (dp) / 8 (sp) S
 - Clock speed: 2.7 GHZ

 $P = 173 \ GF/s \ (dp)$ or $346 \ GF/s \ (sp)$

• But: P= 5.4 GF/s (dp) for serial, non-SIMD code

4/21/16

Benchmark #1: Settling

(Only showing $2d_p$ layer near two walls for clarity)

- Uniform, randomly distributed particles fall to rest in enclosed container under gravity
- Initial random generation of particle location with zero speed
- No slip for all walls
- Quick turn-around time
 - Simulation time = 50 ms
 - CPU time < 6 mins (serial)
- Scaled in "2-D" to avoid load balancing issues
 - x-scale = $np^{1/2}$
 - y-scale = none
 - z-scale = $np^{1/2}$
- Variants: also used to test pure-DEM

Performance results #1: Settling

- Poor weak scaling up to np = ~1000 (~85 nodes on CU-Boulders supercomputer)
- CFD-DEM and pure-DEM scale very similarly (note: $N_{x,y,z} = 10$ and gas is nearly static not a CFD-intensive problem)

Performance results #1: Settling

Benchmark Statistics (Percentages)	
FP operations/cycle	21.5
FP vectorization	8
Level 2 cache miss ratio	28
Level 3 cache miss ratio	15

Loop Metrics (Percentages)	
Vectorized	7.2
Scalar	55.1
Outside	37.7

	Profiling Summary (Top 5 functions)	
	Function	Percentage of time
	CALC_FORCE_DEM	49.26
	COMP_MEAN_FIELDS0	21.96
	DRAG_GS_DES0	10.01
Intel(R) Xeon(R) CPU X5660 @ 2.80GHz 24 Processors per node 24 GB RAM per node	DESGRID_NEIH_BUILD	8.65
	CFNEWVALUES	8.39

Benchmark #2: Fluidized Bed

- Rectangular bed with uniform gas inlet and no-slip side walls
- Coexistence of dilute (bubble) and dense (emulsion) phases of solids
- Importance of lasting contact and friction force
- Experimental data available from NETL Challenge Problem: Small Scale Problem I
- Wide industrial applications
- Variants: can test heat transfer

Performance results #2: Fluidized Bed

Weak scaling analysis for fluidized	ak scaling analysis for fluidized bed	
Number of particles, N _p	2500~2560000	
Number of procs, np	1~1024	
Number of particles per procs	2500	
Number of CFD cell per procs	800	
Simulated time, t_s (s)	0.05	
Serial CPU time, $t_{cpu, serial}$, (h)	0.1	

Benchmark simulations begins after fluidized bed reached steady state, reflected the time evolution of bed pressure drop

Performance results #2: Fluidized Bed

Benchmark Statistics (Percentages	nchmark Statistics (Percentages)	
FP operations/cycle	21	
FP vectorization	7	
Level 2 cache miss ratio	22	
Level 3 cache miss ratio	14	

Loop Metrics (Percentages)	
Vectorized	2
Scalar	58
Outside	40

	Profiling Summary (Top 5 functions)	
	Function	Percentage of time
	COMP_MEAN_FIELDS0	23.13
	DRAG_GS_DES0	12.17
	CALC_FORCE_DEM	10.31
Intel(R) Xeon(R) CPU X5660 @ 2.80GHz 24 Processors per node 24 GB RAM per node	DRAG_GS	7.2
	CFNEWVALUES	6.2

Benchmark #3: Riser Flow

v (cm/s)

50

45 40

35

30 25

20 15

10

5

scaled to np = 16

- Rectangular periodic domain
- Constant gas flux and solid concentration maintained
- Solid-solid interactions dominated by brief binary collisions
- Industrial relevance: mimicking fully-developed flow in freeboard of circulating fluidized bed (CFB)

Performance results #3: Riser Flow

Weak scaling analysis for riser	Veak scaling analysis for riser	
Number of particles, N _p	250~256000	
Number of procs, np	1~1024	
Number of particles per procs	250	
Number of CFD cell per procs	800	
Simulated time, t_s (s)	0.05	
Serial CPU time, $t_{cpu, serial}$, (h)	0.05	

Steady of riser flow reached after the average particle speed levels off, then benchmark cases start

Performance results #3: Riser Flow

Benchmark Statistics (Percentages)	
FP operations/cycle	14
FP vectorization	2
Level 2 cache miss ratio	15
Level 3 cache miss ratio	0

Loop Metrics (Percentages)	
Vectorized	6.3
Scalar	53.0
Outside	40.7

	Profiling Summary (Top 5 functions)	
	Function	Percentage of time
	FUNCTIONS	21.9
	COMP_MEAN_FIELDS0	15.0
	LEQSOL	12.76
Intel(R) Xeon(R) CPU X5660 @ 2.80GHz 24 Processors per node	DGTSV	12.25
24 GB RAM per node	DRAG_GS_DES0	4.54

Benchmark #4: Square tumbler

• Enclosed pipe of square crosssection

- Scaled in "1D"
 - x-scale = none
 - *y*-scale = none
 - z-scale = np
- Total concentration of 30%
 → particles packed in ~¹/₂ domain
- Avoid moving walls: gravity vector rotated through *xy*-plane
- Speed: $\omega = \pi (rad/s) = 30 (rpm)$
- Variants: bi-disperse mixture
 - $d_{p1}/dp_2 = 2$
 - 50/50 mixture
 - Same total concentration as monodisperse case

Performance results #4: Square tumbler

issues above np = 64

Weak scaling analysis for tumbler case	
N _p /np (both)	9165
N _x N _y N _z /np (CFD-DEM only)	2000 (20 ² ·5)
Serial CPU time (CFD-DEM)	2.8 (h)

Performance results #4: Square tumbler

Benchmark Statistics (Percentages)		
FP operations/cycle	28	
FP vectorization	7	
Level 2 cache miss ratio	17	
Level 3 cache miss ratio	2	

Loop Metrics (Percentages)	
Vectorized	5.1
Scalar	57.8
Outside	37.1

Profiling Summary (Top 5 functions)		
Function	Percentage of time	
CALC_FORCE_DEM	31.3	
CALC_DRAG_DES	20.5	
COMP_MEAN_FIELDS	13.3	
NEIGHBOUR	6.6	
PARTICLES_IN_CELL	5.4	

Benchmark #5: Homogeneous **Cooling System**

- Very common problem in physics community
- Traditionally used to study onset of instabilities - here we stay in the homogeneous regime ($\phi = 0.01$)
- Particles uniformly, randomly distributed
- Particle have normal, random velocity but zero net velocity in each direction (i.e. T_0)
- Fully periodic
- Granular temperature, T, decays in time through elastic collisions and interfacial drag

Performance results #5: Homogeneous Cooling System

Weak scaling analysis for HCS case		
N _p /np (both)	1222	
N _x N _y N _z /np (CFD-DEM only)	8000 (203)	
Serial CPU time (CFD-DEM)	812 (s)	

 Remains homogeneous even at large *L* due to *L_{serial}*-periodicity

Scaling Summary

Strong Scaling of Settling

Current Capability

- $10^3 N_p/core$: Good speed for quick turn-around
- $10^4 N_p/core$: Slow, but likely acceptable
- $10^5 N_p/core$: Too slow for R&D turn-around

Goal: $N_p = 10^8$ for realistic simulations

- $10^3 N_p/core \cdot 10^5 cores$: Unrealistic industrial capability
- $10^4 N_p/core \cdot 10^4 cores$: Sweet spot, but need to improve

serial speed and scalability for cores >10³

 $10^5 N_p/core \cdot 10^3 core$: MFIX too slow

Performance Summary

- To enable industrial flows
 - 10⁴ to 10⁵ particles per core
 - Performance of MFIX needs to improve
- Barriers to better performance
 - Low vectorization of inner loops
 - High number of cache misses
 - Poor weak scaling

MFIX-DEM Improvements

- Current status
- General floating point optimization
 - Drag calculation
- Algorithmic changes to improve memory performance and aid vectorization
 - Sorting particles
 - Spatially
 - By type of particle
 - Memory alignment improvements

Floating Point Optimization - Drag

Expressions with divisions and repeated operations in Koch Hill drag

F_0 = (1.0D0-w) * (1.0D0 + 3.0D0*dsqrt(phis/2.0D0) + & 135.0D0/64.0D0*phis*LOG(phis) + 17.14D0*phis) / & (1.0D0 + 0.681D0*phis - 8.48D0*phis*phis + & 8.16D0*phis**3) + w*10.0D0*phis/(1.0D0-phis)**3

- Optimize using
 - Pre-calculated variables for dsqrt and log
 - Use contiguous memory

phivals(1)=phis phivals(2)=phis*phis phivals(3)=1.d0/phis phivals(4)=dsqrt(phis*0.5d0) phivals(5)=LOG(phis) one_m_phis_3_inv = (1.d0-phis)**(-3.d0)

Spatial reordering of particles

- This will ensure spatial locality in memory while
 - Finding neighbors
 - Calculating inter particle forces
 - Drag calculations
 - Extrapolating mean fields.
- This reordering need not be done every des time step
 - Done only once at the beginning of des time march

Rearrangement based on state

Removal of this condition for most particles that are normal can aid in vectorization

- Particles are exchanged (ie say part. 1 becomes part. 4)
- When sorting neighbor arrays
 - Need to populate new ids
 - Need to adjust neighbor_index
 - Need to offset sets of indices

Square tumbler case (~ 9000 particles)

Original code

comp_mean_fields0	83.337
libm_pow_e7	54.358
drag_gs_des0	45.799
calc_force_dem	39.25
drag_bvk	38.008
cfnewvalues	34.01
drag_weightfactor	27.209
des_drag_gp	26.959
desgrid neigh build	25.129
drag_interpolation	22.889
calc_dem_force_with_wall_stl	18.63
particles_in_cell	18.57
dgtsv	8.53
fluid_at	7.68
is_normal	5.11
is_nonexistent	4.62
leq_iksweep	4.61
set_interpolation_stencil	4.41
is_on_mype_wobnd	4.4
funijk	4.28
check_cell_movement	3.59
cfrelvel	3.4

Total wall clock time = 531 sec

Optimized code

comp_mean_fields0	76.708
libm_pow_e7	52.549
calc_force_dem	36.109
drag_gs_des0	33.509
cfnewvalues	33.059
des_drag_gp	32.13
drag_interpolation	23.669
drag_bvk	23.469
drag_weightfactor	22.28
desgrid_neigh_build	20.199
particles_in_cell	18.43
calc_dem_force_with_wall_stl	11.5
fluid_at	8.62
dgtsv	8.19
leq_iksweep	4.82
is_normal	4.71
set_interpolation_stencil	4.36
is_on_mype_wobnd	4.28
is_normal	4.24
funijk	3.91
check_cell_movement	3.83
cfrelvel	3.26

Total wall clock time = 486 sec

Next Steps

- Removing if conditions in loops for vectorization
- Sorting particles by state
 - Sort non-existent particles also and move it to the end
- Looping over cells instead of particles and computing inter-particle forces

Other Contributions to MFIX-DEM

- Initial bug fixes for the Fortran dependency generator
- A new Fortran dependency generator
- autoconf macro to query the alignment size from the compiler.

Questions ?