Compact, Ceramic, Microchannel Heat Exchangers

C. Lewinsohn and J. Fellows - Ceramatec, Inc.

N. Sullivan, R.J. Kee, and R. Braun – The Colorado School of Mines

Introduction & Overview

- Benefits/Objectives
- Design Modeling
- Fabrication
- Testing
- Summary

Ceramatec Overview

- Founded 1976
- Owned by CoorsTek, LLC
 - Global manufacturer of technical ceramics.
- 8,000 m² R&D and Mfg Facility
- Concept to commercialization
 - R&D --> prototype --> pilot scale --> fabrication
- Core competencies:
 - electrochemistry, ionic conducting ceramics, microchannel components, & advanced materials
- Customers
 - 40% Fortune 500 companies
 - 60% Govt. R&D

3

Ceramatec: Business Models

Self &

Funded

Labscale Concept **Development**

Manufacturing **Joint Venture** Licensing Spin Off Company

TECHNOLOGIES"

Integrated electrochemical systems utilizing ionic transport membrane technology

Prototype Unit

Commercial Unit

Benefits of Ceramic Heat Exchangers

OMORROW'S CERAMIC SYSTEMS

- Allow higher operating temperatures.
 - Higher efficiency
 - Reduced
 emissions
- Corrosion resistant
- Low cost

5

Project Objectives

- Validate design tools for ceramic, microchannel heat exchangers.
- Demonstrate commercial manufacturing methods.
- Demonstrate integration of ceramic components with hot flow manifolds.
- Demonstrate thermal performance of hightemperature heat exchangers.
- Advance technology from labscale to benchscale.

6

Project Tasks

- Task 1: Project Management
- Task 2: Heat Exchanger Plate Design and Analysis
- Task 3: Heat Exchanger Plate Fabrication and Testing
- Task 4: Prototype Stack Fabrication
- Task 5: Prototype Stack Testing

System Modeling - Microturbine

Turbine Model and Net Power (kW)	C30	C65	C200
Pressure Drop (kPa)	10	7.5	7.5
Air Side Mass Flow Rate (kg/s)	0.2991	0.498	1.348
Exhaust Side Mass Flow Rate (kg/s)	0.3051	0.5027	1.36
Air Inlet (SP 2) Temp (C)	149.4	168.1	190.6
Air Outlet (SP 3) Temp (C)	589.4	571.6	594.7
Exhaust Inlet (SP 5) Temp (C)	694.4	690.6	666.7
Exhaust Outlet (SP 6)Temp (C)	275.3	309.3	280.7
Recuperator Heat Transfer (kW)	140.9	215.2	585.8
Recuperator Effectiveness	0.799	0.7632	0.8427

Amazing Solutions

Microchannel Modeling – Pressure Drop

- Channel height > 0.6 mm
- Low Reynolds number required for narrow channels

FOMORROW'S CERAMIC SYSTEMS

Microchannel Modeling -Effectiveness

- Design parameters:
- Re = 600
- channel height = 0.8 mm

Microchannel Modeling -Reliability

Design parameters:

- System level failure probability = 1 x 10⁻⁶
- SiC characteristic strength = 587 MPa, Weibull modulus = 6.4
- Heat transfer layer thickness = 1.2 mm (0.048")

11

Microchannel Modeling – Material Selection

- Silicon carbide and mullite offer similar thermal performance.
- Silicon carbide has higher strength, higher thermal conductivity, and creep resistance.
- Silicon carbide is approx. 2-4x more expensive.
- Mullite is more oxidation resistant than silicon carbide.
- Silicon carbide has been selected for initial applications.

Design Options

Block Design

• Design options:

- PCHE, FPHE, etc.
- Plate-shell: microchannel plate/macrochannel shell
- Block design

Compact Heat Exchanger Benefits Diamond Higher surface/volume ratio and small transport distances **Channels** provide higher effectiveness than conventional designs. **≻50% Overlap HX Effectiveness** Hexagonal Diamond Channels >50% Overlap Hex 50% Offset Hexagonal **Channels** Hex 100% Offset ≻100% Overlap .2 mm Riblets Channels w/ **Riblets** ≻0.1 mm .1 mm Riblets ≻0.2 mm Straight Channels Straight **Channels** 0.85 0.9 0.95 T/T_{max} 14 FOMORROW'S CERAMIC SYSTEMS Illustration courtesy M. Wilson

Ceramatec Approach

Plate-Shell Design

Individual plates as repeat units in modular stacks

reduce net cost:

- Downstream yield of full component
- Simpler layup
- Simpler binder removal
- Simpler manifolds

1 - Control surface area for slip properties and sintering.

2 - Disperse materials for uniform tape properties (featuring and lamination), defect elimination and controlled sintering shrinkage.

3 - Dry tape uniformly for uniform thickness, minimal drying stress, without defects.

Laminated Object Manufacturing

4 – Optimise power and speed to minimise heat affected zone, maximize throughput, and obtain accurate channel dimensions.

- 4 Laser cut or punch depending on layer thickness and channel dimensions.
- 5 Complete lamination for structural integrity without deforming internal features.

Laminated Object Manufacturing

6 Sintering

6 – Controlled thermal cycle/environment for binder burnout and densification to make leak tight components while maintaining flatness without creating defects.

6 – Complex designs require co-sintering dissimilar materials and porous and dense layers in the same component.

7 – Requires robust ceramic-ceramic joining.

Microchannel Heat Exchanger Design Flexibility

Microchannel Heat Exchangers

Performance Metrics

Performance Metric	Value
Thermal Duty	1 MW (heat)
Hydraulic Diameter - Feed	636µ
Hydraulic Diameter - Exhaust	1684µ
Temperature Span (Inlet to Inlet)	450C to 950C
Volume	1.0 m^3
Log Mean Delta Temperature	25C
Overall Heat Transfer Coefficient	$145 \text{ W/m}^2\text{C}$
Area Density (modular stack)	$310 \text{ m}^2/\text{m}^3$

• Scaleable from kW to MW

Calculated values

- Estimated ceramic heat exchanger cost: \$100-200 kW_{th}
- Reference case: gas separation modules: 100 \$/kW (independently verified by 3rd party for DOE).

Plate Design

- Plate Shell design
- Flow distribution to channels
- Flow distribution across plates

Plate Fabrication and Testing

Individual Plates

Test Results

Individual Plates

Initial results:

Amazing Solution

- Plates and manifold pipes leak tight
- Moderate pressure drop
- Approach temperature > 100C for >5 slpm

CERAMATEC TOMORROW'S CERAMIC SYSTEMS

Test Apparatus

3-10 plate stacks

Test Apparatus

3-10 plate stacks

Measurements

Plate Temp in Plate Temp Out Channel Temp in Channel Temp Out Channel Pressure In Channel Pressure Out

Preliminary results indicate good performance: Good pressure drop – 4-5 kPa Maximum effective heat transfer coefficient – 70 W/m-K Maximum effectiveness – 65%

TOMORROW'S CERAMIC SYSTEMS

Test Results

3 plate stack

FOMORROW'S CERAMIC SYSTEMS

Test flow rates << design rates Low flow leads to poor flow distribution and low utilization of HX plate area Data agrees well with CFD models, assuming poor flow distribution

Test Results

3 plate stack

Assuming poor flow distribution, effectiveness demonstrates benefits of compact heat exchanger design are obtained.

COORSTEK Amazing Solutions*

Demonstration: PCHE cross flow

Block Design

20-30 individual tape layers. Featured, laminated, and sintered as one unit. Successfully fabricated on second attempt. R&D cost.

Further Risk Mitigation

Support mitigation of key technical risks, especially lifetime:

- Continue study and validation of design tradeoffs between design for manufacturing and performance.
- Materials testing: oxidation.
- Assembly of 5-10 kW stacks and n * 1000 h testing.
- Verify reliability of integration with balance of plant, especially hot gas manifolds.
- Verification of viable manufacturing costs for robust and scalable processes.

Summary

- Design parameters, materials, and commercially viable fabrication processes demonstrated for high effectiveness, low pressure drop, mechanically reliable ceramic, compact heat exchangers.
- Project is on track to demonstrate 5-10 kW heat exchange.
- A plan to mitigate risks for commercialization has been developed.

Acknowledgements

- US DOE NETL Crosscutting Technologies Award DE-FE0024077. Project Manager – Richard Dunst.
- Ceramatec: Angela Anderson, Kiley Adams.
- CoorsTek: SiC powder

Thank you. Questions?

Acknowledgement: DOE Office of Fossil Energy, Office of Crosscutting Technology, DE-FE-0024077.

