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Introduction & Overview

• Benefits/Objectives
• Design Modeling
• Fabrication
• Testing
• Summary



• Founded 1976
• Owned by CoorsTek, LLC

– Global manufacturer of technical 
ceramics. 

• 8,000 m2 R&D and Mfg Facility
• Concept to commercialization

– R&D --> prototype --> pilot scale --> 
fabrication

• Core competencies: 
– electrochemistry, ionic conducting 

ceramics, microchannel components, & 
advanced materials

• Customers
– 40% Fortune 500 companies
– 60% Govt. R&D

Ceramatec Overview
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Labscale Concept 
Development Benchscale Multi-Cell Prototype Unit

Commercial Unit

Self &
Government 
Funded

Corporate/
Partner 
Funded

Integrated electrochemical systems 
utilizing ionic transport membrane 
technology

Spin Off Company

Ceramatec: Business Models

Licensing
Joint Venture
Manufacturing
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Benefits of Ceramic Heat 
Exchangers

• Allow higher 
operating 
temperatures.
– Higher efficiency
– Reduced 

emissions
• Corrosion resistant
• Low cost
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Project Objectives
• Validate design tools for ceramic, 

microchannel heat exchangers.
• Demonstrate commercial manufacturing 

methods.
• Demonstrate integration of ceramic 

components with hot flow manifolds.
• Demonstrate thermal performance of high-

temperature heat exchangers.
• Advance technology from labscale to 

benchscale.
•
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Project Tasks
Task 1: Project Management
Task 2: Heat Exchanger Plate Design and 

Analysis
Task 3: Heat Exchanger Plate Fabrication and 

Testing
• Task 4: Prototype Stack Fabrication
• Task 5: Prototype Stack Testing



System Modeling - Microturbine
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Microchannel Modeling –
Pressure Drop
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• Channel height > 0.6 mm
• Low Reynolds number required for narrow channels



Microchannel Modeling -
Effectiveness
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• Design parameters:
• Re = 600
• channel height = 0.8 mm



Microchannel Modeling -
Reliability
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Design parameters:
• System level failure probability = 1 x 10-6

• SiC characteristic strength = 587 MPa, Weibull modulus = 6.4
• Heat transfer layer thickness = 1.2 mm (0.048”)



Microchannel Modeling –
Material Selection
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• Silicon carbide and mullite offer similar thermal 
performance.

• Silicon carbide has higher strength, higher thermal 
conductivity, and creep resistance.

• Silicon carbide is approx. 2-4x more expensive.
• Mullite is more oxidation resistant than silicon carbide.
• Silicon carbide has been selected for initial applications.
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Design Options
Plate-Shell Design Block Design

• Design options:
• Plate-shell: microchannel plate/macrochannel shell
• Block design

PCHE, FPHE, etc.
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Compact Heat Exchanger Benefits
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Higher surface/volume ratio and small transport distances 
provide higher effectiveness than conventional designs.
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Ceramatec Approach
Plate-Shell Design

• Individual plates as repeat units in modular stacks 
reduce net cost:
• Downstream yield of full component
• Simpler layup
• Simpler binder removal
• Simpler manifolds



Laminated Object Manufacturing
Tape 

fabrication
3Powder

processing

1 Slip 
preparation
2

1 - Control surface area for slip properties and sintering.
2 - Disperse materials for uniform tape properties (featuring and lamination), defect 
elimination and controlled sintering shrinkage.
3 - Dry tape uniformly for uniform thickness, minimal drying stress, without defects.
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Laminated Object Manufacturing
Tape

featuring
4 Tape

lamination

5

4 – Optimise power and speed to minimise heat affected zone, maximize throughput, 
and obtain accurate channel dimensions.
4 – Laser cut or punch depending on layer thickness and channel dimensions.
5 – Complete lamination for structural integrity without deforming internal features.
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Laminated Object Manufacturing
Sintering6 Stack Assembly7

6 – Controlled thermal cycle/environment for binder burnout and densification to make 
leak tight components while maintaining flatness without creating defects.
6 – Complex designs require co-sintering dissimilar materials and porous and dense 
layers in the same component.
7 – Requires robust ceramic-ceramic joining.
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5 kWth



Microchannel Heat Exchanger 
Design Flexibility



Microchannel Heat Exchangers 
Performance Metrics

Performance Metric Value 
Thermal Duty  1 MW (heat) 
Hydraulic Diameter - Feed 636μ 
Hydraulic Diameter - Exhaust 1684μ 
Temperature Span (Inlet to Inlet) 450C to 950C 
Volume 1.0 m3 
Log Mean Delta Temperature 25C 
Overall Heat Transfer Coefficient 145 W/m2C 
Area Density (modular stack) 310 m2/m3 
 Calculated values• Scaleable from kW to MW

• Estimated ceramic heat exchanger cost: $100-200 kWth
• Reference case: gas separation modules: 100 $/kW 

(independently verified by 3rd party for DOE). 
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Plate Design

• Plate Shell design
• Flow distribution to channels
• Flow distribution across plates



Plate Fabrication and Testing

Individual Plates

Gas inlet
Gas outlet



Test Results
Individual Plates

Initial results:
• Plates and manifold pipes leak tight
• Moderate pressure drop
• Approach temperature > 100C for >5 slpm



Test Apparatus
3-10 plate stacks



Test Apparatus
3-10 plate stacks

Measurements

Plate Temp in
Plate Temp Out
Channel Temp in
Channel Temp Out
Channel Pressure In
Channel Pressure Out



Test Results
3 plate stack

Preliminary results indicate good performance:
Good pressure drop – 4-5 kPa
Maximum effective heat transfer coefficient – 70 W/m-K
Maximum effectiveness – 65%



Test Results
3 plate stack

Test flow rates << design rates
Low flow leads to poor flow distribution and low utilization of HX plate area
Data agrees well with CFD models, assuming poor flow distribution



Test Results
3 plate stack

Assuming poor flow distribution, effectiveness demonstrates benefits of compact 
heat exchanger design are obtained.
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Demonstration: PCHE cross flow 

Block Design
20-30 individual tape layers.
Featured, laminated, and sintered as one unit.
Successfully fabricated on second attempt.
R&D cost.



Further Risk Mitigation
Support mitigation of key technical risks, especially 
lifetime:

• Continue study and validation of design tradeoffs 
between design for manufacturing and 
performance.

• Materials testing: oxidation.
• Assembly of 5-10 kW stacks and n * 1000 h 

testing.
• Verify reliability of integration with balance of 

plant, especially hot gas manifolds.
• Verification of viable manufacturing costs for 

robust and scalable processes.



Summary
• Design parameters, materials, and commercially 

viable fabrication processes demonstrated for high 
effectiveness, low pressure drop, mechanically 
reliable ceramic, compact heat exchangers.

• Project is on track to demonstrate 5-10 kW heat 
exchange.

• A plan to mitigate risks for commercialization has 
been developed. 
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Thank you.  Questions?
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