

www.energyinohio.org

Benefits of Tailoring Hot Isostatic Pressure/Powdered Metal (HIP/PM) and Additive Manufacturing (AM) To Fabricate Advanced Energy System Components

DE-FE0024014

Presented by: 20 Nancy Horton, EIO Project Manager Roy Sheppard, EIO Production Specialist *in collaboration with:*

2016 NETL Crosscutting Research Review Meeting

April 19, 2016 Pittsburg, PA USA

Sydni Credle, NETL Project Manager, Crosscutting Research Division

National Energy Technology Laboratory

Statement of Project Objectives

Demonstrate how tailoring HIP/PM, coupled with advances in AM (also known as 3D printing or 3DP) has specific, measurable benefits for fabricating advanced energy (AE) system components.

Goals:

- Validate that AM, in combination with HIP, offers a viable method of producing A-282 components
- Provide key information about cost, manufacturing challenges/opportunities and lead-times when compared to other methods including traditional HIP/PM and casting.

Relevance to Fossil Energy

For expensive, high nickel alloy components, EIO activities have shown advantages of HIP/PM over other methods such as casting and forging.

- Savings up to 40% in raw material costs (vs. casting)
- Eliminates difficulties resulting from reactivity of these materials in the molten state
- Facilitates manufacture of large size requirements associated with FE/AE
- Net shape & porosity free parts require less post processing including machining & weld repair

Work in AM suggests further advantages...

Potential Significance of the Results of The Work

- Many new advanced alloys for Fossil Energy will require new manufacturing methods
- Supplier Availability will determine the rate for adopting Clean Coal technologies
- Castings, Forgings, and Extrusions are <u>THE</u> "pinch points"
- Current Supply Base is Mostly Off-Shore
- Saturated with Long Lead Times

Creates opportunity for evolving US industrial base

Project Approach

Commercial Relevance Project utilizes a Westinghouse gate valve

- Modified to ¼ scale
- 3″ x 4″ x 2″
- ~ 2.7 lbs -
- wall thickness range ¼" ¾"

Valve selected for the complexity of its shape & crosscutting applications to other AE systems, including nuclear

Project Approach

- Three new methods of manufacturing advanced alloys are under evaluation:
 - 1. Directly built AM parts;
 - 2. AM cans for HIP/PM; and
 - 3. AM cans produced in the final part material.

Project is utilizing

- Binderjet technology (fastest metal 3DP technique, coupled with an alloy specific sintering profile to produce a sufficiently dense part for final HIP
- Haynes 282, a high nickel material capable of withstanding the severe operating environments required in AE systems
- Project is being conducted in 3 Phases

Energy Industries Of Ohio	Primary Tasks
	1.0 – Project Management & Planning
	2.0 – Atomization of A-282
Phase 1	3.0 – Material Characterization & Sintering
	Methodology (MC/SM) for A-282
Phase 2	4.0 – Produce 2 Valve Components via AM
	Cans & HIP/PM Manufacturing
	5.0 – Produce 1 Valve via AM/3DP and HIP
Phase 3	6.0 – Post Processing Analysis
	7.0 – Outreach & Technology Dissemination

Task 1.0 – Project Mgmt & Planning

Team Leader:

Energy Industries of Ohio

in collaboration with

Project Management & Planning

www.energyinohio.org

Energy Industries of Ohio

- Non Profit 501(c) 3 Corp
- Facilitate Technology Development for Ohio's Base load Generation
- Implement Efficiency Projects for Energy Intensive User Industries
 - 9 Industries use 30% of all energy
 - Ohio is first for 3 & in the top five for others
- Foster Collaborations & Teams
 - Federal, State, University, National Laboratories & Private Industry
 - Exploit Synergies between supply and demand sectors

Our Workforce and Skills Challenge

EIO's Role in US Manufacturing

Traditional manufacturing +

- EIO is working with heavy manufacturers (castings, forgings, fabrications etc) to enhance their traditional manufacturing processes
- Automation, energy efficiency and innovations help to offset higher labor charges domestically.
- Advanced Manufacturing
 - EIO is working on R&D projects involving both new materials and new methods of manufacturing

RESULTS: Not only are we re-shoring for US opportunities, we are also getting foreign companies approaching us with export opportunities

Technical Background/Project Motivation

National Compact Stellarator Program

12

1 Nancy Horton, 4/26/2015

Technical Background/Project Motivation

EIO is Prime Contractor for \$50M Advanced-UltraSuperCritical Materials Program

Pulverized Coal CCS technology

Energia

Af Ahin

ndustries

- Î Efficiency ↓ Emissions
- Consortium of All U.S.
 Boiler and Turbine
 Manufacturers and EPRI
- Goal: 5000psig, 1300°F main steam and above for net plant efficiency >45%
- New Materials (nickelbased alloys) and designs
- Supply Base is key to commercialization

A-USC Consortium Members

ELECTRIC POWER RESEARCH INSTITUTE

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

imagination at work

A progressive increase in steam conditions has been taking place worldwide

US A-USC Goal

Materials Selection for A-USC Alloys (Boiler Superheater/Reheater Tubing Strength)

UltraSuperCritical (USC) Materials Project – Potential Show-Stoppers

images from Japan Steel Works

Product Form and Size Limitations

The U.S. domestic boiler and turbine manufacturers are working to confirm the materials technology and component fabrication feasibility for advanced USC plant components.

The production capabilities of raw material suppliers and foundries must also be assessed for:

- Large, heavy wall pipe
- Castings
- Forgings

The ultimate plant unit size and other design aspects will be influenced by the size and product form limitations of domestic and worldwide suppliers (i.e. foundries, forges, etc.) capable of working with these new, high-strength materials.

Technical Background/Project Motivation (Cont.)

- Both Programs involved locating suppliers
- Found Castings, Forgings, and Extrusions are <u>THE</u> "pinch points"
- Found Supplier Base is limited, saturated and foreign
- Found Supplier Base for Coal/Nuclear Overlaps
- Found Supplier Availability will impact the rate for introducing both Clean Coal and Nuclear Systems

Opportunity for Supply Chain Development

Ohio/TechBelt Opportunity for an Advanced Energy (AE) Supplier Program

- These needs are traditional TechBelt products
- EIO has direct relationships with these industries and their affiliated organizations FIA, OCMA, OSC, etc.
- Knowledge that their current markets are declining
- Knowledge that they are looking for new markets
- Knowledge that they are capable of transition into AE markets
 - But....They don't know of Advanced Energy opportunities
 - And....Power Gen potential customers don't know of them

EIO could connect the dots!

EIO Approach in Ohio & TechBelt

EIO employed a different (bottoms-up) model 1.Develop the specific "needs envelope" (sizes, alloys, etc.) of target "pinch point" items

* Worked with key customers from fossil and nuclear

- 2.Use Industry organizations to ID candidate suppliers
- 3.Conduct on-site visits to assess interest & ability

4. Facilitate customer interaction and teaming opportunities

- 5. "Champion" needs for transitional assistance
- 6. Pursue technology development & demonstration

EIO Approach in Ohio & TechBelt

Program Outcomes

Energik

Af Ahin

- A Catalogue listing Ohio Suppliers that can meet the AE Power Gen Industry needs – Project was expanded to include Pittsburgh Region
- Promoting the Catalogue to OEM's & Customers
- Cultivation of HUBS around pinch points & market/export opportunities
- Advanced Research, Prototype Development & Industry Expansion

Technical Background/Project Motivation

Under the Ohio Program, EIO conducted Research & Technology Development

Using A-282

Produced World's largest Step Casting followed by an AE Valve using A-282

 Working with Carpenter & Bodycote - Duplicated A-282 Step Component using HIP/PM

Technical Background/Project Motivation

- Additive Manufacturing is a logical progression in seeking new methods for producing FE/AE components
- Dialogue and collaboration with our colleagues at Carpenter, ExOne and Bodycote focused on finding ways to make AM and HIP/PM more competitive
- Potential advantages, including reduced costs and leadtimes, of combining AM with HIP/PM resulted in this project proposal
- Carpenter, ExOne and Bodycote are all highly respected companies in their fields, with facilities in the TechBelt

Atomization of A-282 PEP – Carpenter Powder Products

Manufactures a broad range of gas atomized loose metal powders and consolidated powder forms

> Manufacturing: PA, RI and Sweden R&D: Reading, PA

PEP – Carpenter Powder Products

Leader in Gas Atomization Technology

Bridgeville, PA

- Air Induction
- VIM (2)
- Ar and N

Torshalla, Sweden

- Air Induction (2)
- N

Woonsocket, RI

- Protected atm.
- Ar and N

Stainless steels, nickel/cobalt base, fine powders, tool steels Capacity – 20,000 Tons

PEP – Carpenter Powder Products

Program Task 2: Powder Manufacturing

Melting

Chemical Analysis

Screening

Particle Size Determination

Blending

26

Project Team Member The ExOne Company

A Global Supplier of Industrial Additive Manufacturing Equipment

- 50-year history of developing and implementing nontraditional manufacturing processes.
- Invested >\$80 million in the development and implementation of three-dimensional printing (3DP) since the early 1990s.
- Offers both the services and the equipment for applying 3DP technology for molds / cores used for sand castings and direct metal parts.
- ExOne Production Service Centers are located throughout the United States, Germany and Japan.
- ExOne systems are able to print in a variety of industrial materials
 with the largest available build sizes.

Asia | The Americas | Europe

Direct Metal Technology

Spreading new layer of metal powder

Particles agglomerated in one droplet (Voxel)

Powder Printing

Print-Bonded Particles

Parts Stilted for Infiltration

Sintered Particles

3DP is Basic Powder Metallurgy

Product Forms Bonded **Partially Sintered** Infiltrated **Highly Sintered**

Powder metallurgy is the process of blending fine powdered materials pressing them into a desired shape or form (compacting {printing}), and then heating the compressed material in a controlled atmosphere to bond the material (sintering). The powder metallurgy process generally consists of four basic steps: powder manufacture, powder blending, compacting **-**30

ExOne – Materials Research

3DP Binder Jetting Parts – Rapid Production

System	Speed	Build Rate	Layer Thickness
M-Print	75 seconds per layer	2052 cm ³ /hr (125 in ³ /hr)	Variable with minimum of 0.15 mm (0.006 in)
M-Flex	30 seconds per layer	1200 cm ³ /hr (73 in ³ /hr)	Variable with minimum of 0.1 mm (0.004 in)

Direct Metal Technology – M-Flex

<u>Build Volume</u>:

15.5 x 9.5 x 9.5 in. 394 x 241 x 241 mm

Layer Thickness: 100 or 180 microns

<u>Accuracy</u>:

+/- 0.5%

System includes de-powdering station and curing oven

Direct Metal Technology – M-Print

Build Volume: 29.5 x 15 x 15.75 in.

750 x 380 x 400 mm

Layer Thickness: 100 or 180 microns

<u>Accuracy</u>:

+/- 0.5%

ExOne Technologies

Micro Holes and Features with Advanced Laser Machining

Industry Class Additive Manufacturing Equipment

Functional and Accurate 3D Printed Metal Parts Sand Casting Molds and Cores - Without a Pattern

Direct Metal Technology – S Max

Bodycote Team Member Bodycote

- Bodycote operates a global HIP business with the largest equipment network in the world
- Bodycote has over 50 HIP vessels of varying sizes in multiple locations and is able to accommodate large volumes of small products as economically as large individual components.

- Bodycote provides two major HIP routes for customers:
 - HIP Services, providing porosity removal through HIP densification.
 - HIP Product Fabrication, for the manufacture of components through powder metallurgy and diffusion bonding.

Bodycote Hot Isostatic Pressure

Hot Isostic Pressure (HIP) combines high temperatures (up to 2,000° C) with isostatically applied gas pressures (up to 45,000 psi) – comparable to the Mariana Trench 11,000m deep in the Pacific Ocean.

Bodycote Bodycote HIP Services

- Hot Isostatic Pressing (HIP) combines very high temperature and pressure to eliminate porosity in castings, and consolidate encapsulated powders to give fully dense materials.
- Dissimilar materials can be bonded together to manufacture unique, valueadded components.

HIP Process

•AM Cans are filled with PM then HIP'd.

•AM Valve is also HIP'd to achieve full density

HIP Trials were conducted to determine if the AM cans and AM component could be run through a Coach* HIP Cycle

Temperature	Time	Pressure	Atmosphere
2125° F +/- 25° F	240 +15/-0 minutes	14.75+/25 KSI	argon

*Successful use of the Coach HIP cycle, (as opposed to requiring a customized furnace profile), contributes to the cost competitiveness of the overall manufacturing processes when compared to other manufacturing processes such as casting and forging. Parts can be 40 batched or combined with other orders to reduce cost and leadtime.

Energy Industries Of Ohio	Progress on Primary Tasks
A share	1.0 – Project Management & Planning
	2.0 – Atomization of A-282 ☑
Phase 1	3.0 – Material Characterization & Sintering
	Methodology (MC/SM) for A-282 🗹
Phase 2	4.0 – Produce 2 Valve Components via AM
	Cans & HIP/PM Manufacturing ☑
	5.0 – Produce 1 Valve via AM/3DP and HIP 🗹
Phase 2	6.0 – Post Processing Analysis
r 11030 J	7.0 – Outreach & Tech Dissemination

 \checkmark

Task 2 - Atomization of 282

- For the HIP process powder screened to roughly ~ 250 microns
- For the AM process powder screened to max size 22 microns

SEM photomicrographs of the AM powder are shown in Figures 1 & 2

Task 3 – Material Characterization & Sintering Profile

- Testing of the A282 was conducted in a high vacuum furnace producing a vacuum below 3.0x10⁻⁵
- Three pump downs and backfills with inert gas (96% nitrogen & 4% hydrogen) were done before each run to ensure any moisture was removed from the chamber
- Burnout Temperature 600° C (to remove binder)
- Variables in the test runs included:
 - Furnace Temperature (min 1290° C to max 1325° C)
 - Max Temperature Hold Time (1 hour 1.5 hour)
 - Ramp-up and Ramp-down Rates (5° C/min to 1° C/min. The ramp rate down from 1315° C to 800° C was also changed from 5° C/min to 1° C/min)
 - Number of samples in a run (ranged from 1 3)
 - Size of sample

FINDING: Achieved 99.6% density before machining, 43 with no distortion or cracks!

Task 3 – Material Characterization & Sintering Profile

Optimized Furnace Profile

Furns	ace Type	Pro	flie Name		File Name F				Type	Uni	Units G		-hold HI G-He		Hold Lo		by	Date	Appro	wed by
R	atch	DEC	file # 6		Hav	nec 282	_	Ra	te	Dec	TC I	10 D	er C	10 D	er C	PI	7	000045		
0	atti	PIC	me # 0	<u> </u>	Mater	ial	Havne	< 282	ue	Deg	Part Si	70.2	cg C	10 D		- 800	8/20/15 		Ortentet	10.00
Op	eration:->	51	menng		mater		- ayıncı	5 2.02		Since Since Si					an				Calculat	ed Profile
Ke	marks:->	one pump	down ar	nd backfi	I used to p	urge cha	mber ti	hen a p	oump d	own to	1x10 -	5 and	partial	pressu	re thru o	utrun			Lime	lemp
			Event.	- 11		12	12 13		14	•	EV	ן י	EV	2	EV3	·			Hrs	Deg C
Seg #	Туре	Temp Deg C	Time/R ate	Coo	i Hy	drogen	Work G	Soak	Part press	lal ure	nttrog	jen	Program	m Run	End Cy	cle			0.00	10
1	Soak	10	1			X			X										0.02	10
2	Ramp	10	5			X			X										2.32	700
3	Soak	700	240			X			X										6.32	700
4	Ramp	700	5			X			X										7.32	1000
5	Soak	1000	1			x			X										7.33	1000
6	Ramp	1000	1			x			X										12.25	1295
7	Soak	1295	60			x			X										13.25	1295
8	Ramp	1295	1			x			<u> </u>										21.50	800
9	Soak	800	1			x			<u> </u>										21.52	800
10	Ramp	800	5			x			<u> </u>										23.52	200
n	Soak	200	1			x			X										23.53	200
12	Ramp	200	170			x			<u> </u>										23.55	30
13	Soak	30	1			x			X										23.57	30
14	Ramp	30	1	X							X								24.07	30
15	Soak																		24.07	0
16	Ramp																		#DIV/0!	0
17	Soak																		#DIV/0!	0
18	Ramp																		#DIV/0!	0
19	Soak															_			#DIV/U!	0
20	Soak				-+											_			#DIV/U!	U
Contro	Har Cattin	or for this	Profile	<u> </u>	-+			\rightarrow		\rightarrow				_		_				
Va	riable	Satting	Trome.									Pom	rke							
V di	Table	Setting										Rema	IIKS							
	rog#		<u> </u>																	
r	urge		L																	
Rer	narks:																			
									Furn	ace Pr	ofile									
	1388 ==							++									+++			
	1200 +	++++			++++	+++				71		++			+++	+++	+++		++++	_
ົວ	1388 🎞																			
5	1998 ±								+++			++	++	++-						_
ĕ	268 🎞		*		- *	+++	++	++				+	++	++		+++		$\overline{\mathbf{N}}$		
ā	- <u>888</u> =																			
E.	400 H																			
Ĕ	200 1	АП				+++								H		+++				
	108 🛃																			
Hours	s: 0.00	2.0	0	4.00	6.00	8.0	00	10.00	0	12.00	1	4.00	16	3.00	18.0	0 2	0.00	22.00	24.00	26.00

In the optimized run, the maximum temperature was 1295C, held for one hour. The details of the profile used for this test are shown in the table at right. 99+% denisity was achieved.

Result: Sample was 99.6% dense with no distortion before machining. The sample is shown at right after machining

44

EIO Team produced two fully dense* AM cans of differing wall thicknesses (.125" & .150") in A-282, the same material as the final part, to explore potential benefits of producing the cans from the final part material.

Pictured below: varied angles of the sintered 0.150 inch walled can.

*Achieving full density allowws cans to be filled with PM without first having to run through a HIP cycle

AM Cans were filled with Powdered A-282 in preparation for HIP

Both the valve HIP cans as well as the AM valve component were run in a coach HIP cycle.

Temperature	Time	Pressure	Atmosphere]
2125° F +/- 25° F	240 +15/-0 minutes	14.75+/25 KSI	argon] 4 <i>€</i>

Two cans of differing thicknesses were produced via Additive Manufacturing

Fill or Feed Tube for PM was welded on to AM can

The can on the left is the .125" can prior to HIP.

The completed components from the HIP'd .125 and .150" cans are shown below:

More distortion on the .125" can was detected as compared to the .150" can (pictured below). Future testing could be pursued under a follow-on grant to ascertain optimal can wall thickness and other strategies to overcome distortion.

Cross section shows significant minus material on .125" can

Unsupported flanges "sagged" during HIP on both .125" & .150" cans. No sag in 3D-Printed valve

3-D Printed

☑ Task 5 – Produce 1 Valve Component via AM/3DP & HIP

3DP Valve Successfully Produced in A-282

The support cylinders on the flange shown in the bottom view image (blue arrows highlight two of them) were added in an attempt to allow the part to shrink uniformly and minimize distortion during sintering

The AM valve is subsequently HIP'd to achieve full density.

☑ Task 5 – Produce 1 Valve Component via AM/3DP & HIP

Final AM valve component after HIP and Heat Treat

EIO Has Commenced Phase III

Activities Include:

- ➔ Task 6 Post Processing Analysis
 - Argon Analysis
 - ➔ Metallography
 - ☑ Photography of Finished Parts
 - ☑ Section Final Components for Test & Evaluation
 - Conduct Chemical and Physical Property Tests

→Task 7 – Outreach & Technology Dissemination

- ☑ Outreach Plan
- Dissemination Activities Are On-going

➔ Task 6 – Post Processing Analysis

- The varied parts were all subjected to Heat Treatment (HT)
- New Heat Treat protocol was established by experts at ORNL based on previous work
 - 1. Precipitation age harden 1850 F for 2 hours then air cool
 - 2. Reheat to 1450 F for 8 hours.
- Heat Treat was performed by Bodycote in Cincinnati, OH

➔ Task 6 – Post Processing Analysis

Chemical and Physical Property Tests will be conducted and results will be compared with published and gathered data

Experimental Matrix of

Physical Properties (RT)				Chemical Composition, Weight % (4)																			
Process	0.2% YS (ksi)	UTS (ksi)	Elong %	Hardness	Density	Ni	Cr	Co	Мо	Ti	Al	Fe	Mn	Si	С	В	P	S	W	Та	۷	Ν	0
Published (1)	103.7	166.4	30	93 Rb		57 (2)	20	10	8.5	2.1	1.5	1.5 (3)	0.3 (3)	0.15 (3)	0.06	0.005							
Powder (2012 - Carpenter)						bal	19	9.6	8.4	2.12	1.54	0.04	0.01	0.05	0.056	0.007	0.001	0.002	0.01	0.1	0	0.01	0.006
Cast Step (2011)						58.29	19.345	10.135	8.411	2.113	1.533	0	0	0			0.001	0.001	0.094	0.084	0.005		
HIP/PM step (2013)																							
HIP/PM valve																							
ExOne printed valve																							
(1) solution annealed & age hard	dened plate																						
(2) Nickel as balance																							
(3) Maximum																							
(4) Trace elements < .005% n	ot listed																						

➔ Task 6 – Post Processing Analysis

Finished Components were sectioned for evaluation by multiple sources

Summary

- Tailoring HIP/PM with advances in AM provides specific, measurable benefits for fabricating advanced energy (AE) system components.
- Three new methods of manufacturing advanced alloys under evaluation include:
 - 1. Directly built AM parts;
 - 2. AM cans for HIP/PM; and
 - 3. AM cans produced in the final part material.
- Potential advantages include lower manufacturing costs, ability to produce more complex designs, improved production efficiency & readily transferrable technology
- Post Processing Analysis will identify future R&D direction

Contacts

<u>EIO</u>

- Nancy Horton PI/Project Manager 216-496-2314
- Roy Sheppard Production Specialist 845-386-5811

- Carpenter
- R Dave Novotnak– Senior Mat'ls & Process Engineer
 412-257-5430

- <u>ExOne</u>
- Hilary Gilmore Contract Manager 724-978-7215

<u>Bodycote</u>

Paul Tylus – Technical Sales Manager 978-289-6412