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Overarching Objective Development and demonstration of advanced membrane materials and processes that can achieve cost and energy reductions for brine/water separation from high salinity produced waters.

Energy Costs of Desalination Osmotically Assisted Reverse Osmosis Advanced Thermally Robust Membranes

Use experimentally measured membrane performance data to design Study the significance of membrane properties and validate governin Characterize membrane performance and durability/stability in
)
model, and evaluate brine concentrator processes at process scale to equations for the use of osmotically assisted reverse osmosis (OARO) to chemically challenging process environments having high salinity and
compare with matured technologies. concentrate high salinity brines. high temperature.
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